Uses of Interface
de.lmu.ifi.dbs.elki.utilities.InspectionUtilFrequentlyScanned

Packages that use InspectionUtilFrequentlyScanned
de.lmu.ifi.dbs.elki ELKI framework "Environment for Developing KDD-Applications Supported by Index-Structures" KDDTask is the main class of the ELKI-Framework for command-line interaction. 
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.meta Meta outlier detection algorithms: external scores, score rescaling. 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial Spatial outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood Spatial outlier neighborhood classes 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted Weighted Neighborhood definitions. 
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers. 
de.lmu.ifi.dbs.elki.algorithm.statistics Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) 
de.lmu.ifi.dbs.elki.application Base classes for stand alone applications. 
de.lmu.ifi.dbs.elki.application.cache Utility applications for the persistence layer such as distance cache builders. 
de.lmu.ifi.dbs.elki.application.jsmap JavaScript based map client - server architecture. 
de.lmu.ifi.dbs.elki.application.visualization Visualization applications in ELKI. 
de.lmu.ifi.dbs.elki.data Basic classes for different data types, database object types and label types. 
de.lmu.ifi.dbs.elki.data.images Package for processing image data (e.g. compute color histograms) 
de.lmu.ifi.dbs.elki.database ELKI database layer - loading, storing, indexing and accessing data 
de.lmu.ifi.dbs.elki.datasource Data normalization (and reconstitution) of data sets. 
de.lmu.ifi.dbs.elki.datasource.filter Data filtering, in particular for normalization and projection. 
de.lmu.ifi.dbs.elki.datasource.parser Parsers for different file formats and data types. 
de.lmu.ifi.dbs.elki.distance.distancefunction Distance functions for use within ELKI. 
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter Distance functions deriving distances from e.g. similarity measures 
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.external Distance functions using external data sources. 
de.lmu.ifi.dbs.elki.distance.distancefunction.geo Geographic (earth) distance functions. 
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace Distance functions based on subspaces. 
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries Distance functions designed for time series. 
de.lmu.ifi.dbs.elki.distance.similarityfunction Similarity functions. 
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel Kernel functions. 
de.lmu.ifi.dbs.elki.index Index structure implementations 
de.lmu.ifi.dbs.elki.index.preprocessed Index structure based on preprocessors 
de.lmu.ifi.dbs.elki.index.preprocessed.knn Indexes providing KNN and rKNN data. 
de.lmu.ifi.dbs.elki.index.preprocessed.localpca Index using a preprocessed local PCA. 
de.lmu.ifi.dbs.elki.index.preprocessed.preference Indexes storing preference vectors. 
de.lmu.ifi.dbs.elki.index.preprocessed.snn Indexes providing nearest neighbor sets 
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj Index using a preprocessed local subspaces. 
de.lmu.ifi.dbs.elki.index.tree Tree-based index structures 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants M-Tree and variants. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp MkAppTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop MkCoPTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax MkMaxTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab MkTabTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree MTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants R*-Tree and variants. 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk Packages for bulk-loading R*-Trees. 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu DeLiCluTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar RStarTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util Utilities for R*-Tree and variants. 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and Eigenvector processing. 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions Weight functions used in weighted PCA via WeightedCovarianceMatrixBuilder 
de.lmu.ifi.dbs.elki.result Result types, representation and handling 
de.lmu.ifi.dbs.elki.utilities.optionhandling Parameter handling and option descriptions. 
de.lmu.ifi.dbs.elki.utilities.referencepoints Package containing strategies to obtain reference points Shared code for various algorithms that use reference points. 
de.lmu.ifi.dbs.elki.utilities.scaling Scaling functions: linear, logarithmic, gamma, clipping, ... 
de.lmu.ifi.dbs.elki.utilities.scaling.outlier Scaling of Outlier scores, that require a statistical analysis of the occurring values 
de.lmu.ifi.dbs.elki.visualization Visualization package of ELKI. 
de.lmu.ifi.dbs.elki.visualization.gui Package to provide a visualization GUI. 
de.lmu.ifi.dbs.elki.visualization.projector Projectors are responsible for finding appropriate projections for data relations. 
de.lmu.ifi.dbs.elki.visualization.visualizers Visualizers for various results 
de.lmu.ifi.dbs.elki.visualization.visualizers.optics Visualizers that do work on OPTICS plots 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d Visualizers based on 1D projections. 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d Visualizers based on 2D projections. 
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj Visualizers that do not use a particular projection. 
de.lmu.ifi.dbs.elki.workflow Work flow packages, e.g. following the usual KDD model, closely related to CRISP-DM 
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki
 

Classes in de.lmu.ifi.dbs.elki that implement InspectionUtilFrequentlyScanned
 class KDDTask
          Provides a KDDTask that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection implementing DatabaseConnection.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm
 interface Algorithm
           Specifies the requirements for any algorithm that is to be executable by the main class.
 

Classes in de.lmu.ifi.dbs.elki.algorithm that implement InspectionUtilFrequentlyScanned
 class AbstractAlgorithm<R extends Result>
           This class serves also as a model of implementing an algorithm within this framework.
 class AbstractDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>
          Provides an abstract algorithm already setting the distance function.
 class AbstractPrimitiveDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>
          Provides an abstract algorithm already setting the distance function.
 class APRIORI
          Provides the APRIORI algorithm for Mining Association Rules.
 class DependencyDerivator<V extends NumberVector<V,?>,D extends Distance<D>>
           Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA.
 class DummyAlgorithm<O extends NumberVector<?,?>>
          Dummy Algorithm, which just iterates over all points once, doing a 10NN query each.
 class KNNDistanceOrder<O,D extends Distance<D>>
          Provides an order of the kNN-distances for all objects within the database.
 class KNNJoin<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
          Joins in a given spatial database to each object its k-nearest neighbors.
 class MaterializeDistances<O,D extends NumberDistance<D,?>>
          Algorithm to materialize all the distances in a data set.
 class NullAlgorithm
          Null Algorithm, which does nothing.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering
 interface ClusteringAlgorithm<C extends Clustering<? extends Model>>
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
 interface OPTICSTypeAlgorithm<D extends Distance<D>>
          Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering that implement InspectionUtilFrequentlyScanned
 class AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Abstract superclass for projected clustering algorithms, like PROCLUS and ORCLUS.
 class AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
 class DBSCAN<O,D extends Distance<D>>
          DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
 class DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>>
          DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database.
 class EM<V extends NumberVector<V,?>>
          Provides the EM algorithm (clustering by expectation maximization).
 class KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the k-means algorithm.
 class OPTICS<O,D extends Distance<D>>
          OPTICS provides the OPTICS algorithm.
 class OPTICSXi<N extends NumberDistance<N,?>>
          Class to handle OPTICS Xi extraction.
 class SLINK<O,D extends Distance<D>>
          Efficient implementation of the Single-Link Algorithm SLINK of R.
 class SNNClustering<O>
           Shared nearest neighbor clustering.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that implement InspectionUtilFrequentlyScanned
 class CASH
          Provides the CASH algorithm, an subspace clustering algorithm based on the hough transform.
 class COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the COPAC algorithm, an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions.
 class ERiC<V extends NumberVector<V,?>>
          Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.
 class FourC<V extends NumberVector<V,?>>
          4C identifies local subgroups of data objects sharing a uniform correlation.
 class HiCO<V extends NumberVector<V,?>>
          Implementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters.
 class ORCLUS<V extends NumberVector<V,?>>
          ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high dimensional spaces.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that implement InspectionUtilFrequentlyScanned
 class CLIQUE<V extends NumberVector<V,?>>
          

Implementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality.

 class DiSH<V extends NumberVector<V,?>>
           Algorithm for detecting subspace hierarchies.
 class HiSC<V extends NumberVector<V,?>>
          Implementation of the HiSC algorithm, an algorithm for detecting hierarchies of subspace clusters.
 class PreDeCon<V extends NumberVector<V,?>>
          

PreDeCon computes clusters of subspace preference weighted connected points.

 class PROCLUS<V extends NumberVector<V,?>>
          

Provides the PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces.

 class SUBCLU<V extends NumberVector<V,?>>
           Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that implement InspectionUtilFrequentlyScanned
 class ByLabelClustering
          Pseudo clustering using labels.
 class ByLabelHierarchicalClustering
          Pseudo clustering using labels.
 class TrivialAllInOne
          Trivial pseudo-clustering that just considers all points to be one big cluster.
 class TrivialAllNoise
          Trivial pseudo-clustering that just considers all points to be noise.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier
 interface OutlierAlgorithm
          Generic super interface for outlier detection algorithms.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier that implement InspectionUtilFrequentlyScanned
 class ABOD<V extends NumberVector<V,?>>
          Angle-Based Outlier Detection Outlier detection using variance analysis on angles, especially for high dimensional data sets.
 class AbstractAggarwalYuOutlier<V extends NumberVector<?,?>>
          Abstract base class for the sparse-grid-cell based outlier detection of Aggarwal and Yu.
 class AbstractDBOutlier<O,D extends Distance<D>>
          Simple distance based outlier detection algorithms.
 class AggarwalYuEvolutionary<V extends NumberVector<?,?>>
          EAFOD provides the evolutionary outlier detection algorithm, an algorithm to detect outliers for high dimensional data.
 class AggarwalYuNaive<V extends NumberVector<?,?>>
          BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers.
 class DBOutlierDetection<O,D extends Distance<D>>
          Simple distanced based outlier detection algorithm.
 class DBOutlierScore<O,D extends Distance<D>>
          Compute percentage of neighbors in the given neighborhood with size d.
 class EMOutlier<V extends NumberVector<V,?>>
          outlier detection algorithm using EM Clustering.
 class GaussianModel<V extends NumberVector<V,?>>
          Outlier have smallest GMOD_PROB: the outlier scores is the probability density of the assumed distribution.
 class GaussianUniformMixture<V extends NumberVector<V,?>>
          Outlier detection algorithm using a mixture model approach.
 class INFLO<O,D extends NumberDistance<D,?>>
          INFLO provides the Mining Algorithms (Two-way Search Method) for Influence Outliers using Symmetric Relationship Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006
Ranking outliers using symmetric neighborhood relationship
In Proc.
 class KNNOutlier<O,D extends NumberDistance<D,?>>
           Outlier Detection based on the distance of an object to its k nearest neighbor.
 class KNNWeightOutlier<O,D extends NumberDistance<D,?>>
          Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.
 class LDOF<O,D extends NumberDistance<D,?>>
           Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database.
 class LOCI<O,D extends NumberDistance<D,?>>
          Fast Outlier Detection Using the "Local Correlation Integral".
 class LOF<O,D extends NumberDistance<D,?>>
           Algorithm to compute density-based local outlier factors in a database based on a specified parameter LOF.K_ID (-lof.k).
 class LoOP<O,D extends NumberDistance<D,?>>
          LoOP: Local Outlier Probabilities Distance/density based algorithm similar to LOF to detect outliers, but with statistical methods to achieve better result stability.
 class OnlineLOF<O,D extends NumberDistance<D,?>>
          Incremental version of the LOF Algorithm, supports insertions and removals.
 class OPTICSOF<O,D extends NumberDistance<D,?>>
          OPTICSOF provides the Optics-of algorithm, an algorithm to find Local Outliers in a database.
 class ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
           provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points.
 class SOD<V extends NumberVector<V,?>>
           
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.meta that implement InspectionUtilFrequentlyScanned
 class ExternalDoubleOutlierScore
          External outlier detection scores, loading outlier scores from an external file.
 class FeatureBagging
          A simple ensemble method called "Feature bagging" for outlier detection.
 class RescaleMetaOutlierAlgorithm
          Scale another outlier score using the given scaling function.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial that implement InspectionUtilFrequentlyScanned
 class AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
          Abstract base class for distance-based spatial outlier detection methods.
 class AbstractNeighborhoodOutlier<O>
          Abstract base class for spatial outlier detection methods using a spatial neighborhood.
 class CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          GLS-Backward Search is a statistical approach to detecting spatial outliers.
 class CTLuMeanMultipleAttributes<N,O extends NumberVector<?,?>>
          Mean Approach is used to discover spatial outliers with multiple attributes.
 class CTLuMedianAlgorithm<N>
          Median Algorithm of C.
 class CTLuMedianMultipleAttributes<N,O extends NumberVector<?,?>>
          Median Approach is used to discover spatial outliers with multiple attributes.
 class CTLuMoranScatterplotOutlier<N>
          Moran scatterplot outliers, based on the standardized deviation from the local and global means.
 class CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
          Spatial outlier detection based on random walks.
 class CTLuScatterplotOutlier<N>
          Scatterplot-outlier is a spatial outlier detection method that performs a linear regression of object attributes and their neighbors average value.
 class CTLuZTestOutlier<N>
          Detect outliers by comparing their attribute value to the mean and standard deviation of their neighborhood.
 class SLOM<N,O,D extends NumberDistance<D,?>>
          SLOM: a new measure for local spatial outliers Reference:
Sanjay Chawla and Pei Sun
SLOM: a new measure for local spatial outliers
in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero.
 class SOF<N,O,D extends NumberDistance<D,?>>
          The Spatial Outlier Factor (SOF) is a spatial LOF variation.
 class TrimmedMeanApproach<N>
          A Trimmed Mean Approach to Finding Spatial Outliers.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
static interface NeighborSetPredicate.Factory<O>
          Factory interface to produce instances.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood that implement InspectionUtilFrequentlyScanned
static class AbstractPrecomputedNeighborhood.Factory<O>
          Factory class.
static class ExtendedNeighborhood.Factory<O>
          Factory class.
static class ExternalNeighborhood.Factory
          Factory class.
static class PrecomputedKNearestNeighborNeighborhood.Factory<O,D extends Distance<D>>
          Factory class to instantiate for a particular relation.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted
static interface WeightedNeighborSetPredicate.Factory<O>
          Factory interface to produce instances.
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted that implement InspectionUtilFrequentlyScanned
static class LinearWeightedExtendedNeighborhood.Factory<O>
          Factory class.
static class UnweightedNeighborhoodAdapter.Factory<O>
          Factory class
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial that implement InspectionUtilFrequentlyScanned
 class ByLabelOutlier
          Trivial algorithm that marks outliers by their label.
 class TrivialAllOutlier
          Trivial method that claims all objects to be outliers.
 class TrivialNoOutlier
          Trivial method that claims to find no outliers.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.statistics
 

Classes in de.lmu.ifi.dbs.elki.algorithm.statistics that implement InspectionUtilFrequentlyScanned
 class DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
          Algorithm to gather statistics over the distance distribution in the data set.
 class EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
          Evaluate a distance function with respect to kNN queries.
 class RankingQualityHistogram<O,D extends NumberDistance<D,?>>
          Evaluate a distance function with respect to kNN queries.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application
 

Classes in de.lmu.ifi.dbs.elki.application that implement InspectionUtilFrequentlyScanned
 class AbstractApplication
          AbstractApplication sets the values for flags verbose and help.
 class ComputeSingleColorHistogram
          Application that computes the color histogram vector for a single image.
 class GeneratorXMLSpec
          Generate a data set based on a specified model (using an XML specification)
 class KDDCLIApplication
          Provides a KDDCLIApplication that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection implementing DatabaseConnection.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application.cache
 

Classes in de.lmu.ifi.dbs.elki.application.cache that implement InspectionUtilFrequentlyScanned
 class CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
          Wrapper to convert a traditional text-serialized result into a on-disk matrix for random access.
 class CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
          Wrapper to convert a traditional text-serialized result into a on-disk matrix for random access.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application.jsmap
 

Classes in de.lmu.ifi.dbs.elki.application.jsmap that implement InspectionUtilFrequentlyScanned
 class JSONResultHandler
          Handle results by serving them via a web server to mapping applications.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application.visualization
 

Classes in de.lmu.ifi.dbs.elki.application.visualization that implement InspectionUtilFrequentlyScanned
 class KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          User application to explore the k Nearest Neighbors for a given data set and distance function.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.data
 

Classes in de.lmu.ifi.dbs.elki.data that implement InspectionUtilFrequentlyScanned
static class ClassLabel.Factory<L extends ClassLabel>
          Class label factory
static class HierarchicalClassLabel.Factory
          Factory class
static class SimpleClassLabel.Factory
          Factory class
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.data.images
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.data.images
 interface ComputeColorHistogram
          Interface for color histogram implementations.
 

Classes in de.lmu.ifi.dbs.elki.data.images that implement InspectionUtilFrequentlyScanned
 class AbstractComputeColorHistogram
          Abstract class for color histogram computation.
 class ComputeHSBColorHistogram
          Compute color histograms in a Hue-Saturation-Brightness model.
 class ComputeNaiveHSBColorHistogram
          Compute color histograms in a Hue-Saturation-Brightness model.
 class ComputeNaiveRGBColorHistogram
          Compute a (rather naive) RGB color histogram.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.database
 

Classes in de.lmu.ifi.dbs.elki.database that implement InspectionUtilFrequentlyScanned
 class HashmapDatabase
          Provides a mapping for associations based on a Hashtable and functions to get the next usable ID for insertion, making IDs reusable after deletion of the entry.
 class StaticArrayDatabase
          This database class uses array-based storage and thus does not allow for dynamic insert, delete and update operations.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource
 interface DatabaseConnection
          DatabaseConnection is used to load data into a database.
 

Classes in de.lmu.ifi.dbs.elki.datasource that implement InspectionUtilFrequentlyScanned
 class AbstractDatabaseConnection
          Abstract super class for all database connections.
 class EmptyDatabaseConnection
          Pseudo database that is empty.
 class ExternalIDJoinDatabaseConnection
          Joins multiple data sources by their label
 class FileBasedDatabaseConnection
          Provides a file based database connection based on the parser to be set.
 class GeneratorXMLDatabaseConnection
           
 class InputStreamDatabaseConnection
          Provides a database connection expecting input from an input stream such as stdin.
 class LabelJoinDatabaseConnection
          Joins multiple data sources by their label
 class RandomDoubleVectorDatabaseConnection
          Produce a database of random double vectors with each dimension in [0:1]
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.filter
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.filter
 interface Normalization<O>
          Normalization performs a normalization on a set of feature vectors and is capable to transform a set of feature vectors to the original attribute ranges.
 

Classes in de.lmu.ifi.dbs.elki.datasource.filter that implement InspectionUtilFrequentlyScanned
 class AbstractNormalization<O>
          Abstract super class for all normalizations.
 class AttributeWiseErfNormalization<O extends NumberVector<O,?>>
          Attribute-wise Normalization using the error function.
 class AttributeWiseMinMaxNormalization<V extends NumberVector<V,?>>
          Class to perform and undo a normalization on real vectors with respect to given minimum and maximum in each dimension.
 class AttributeWiseVarianceNormalization<V extends NumberVector<V,?>>
          Class to perform and undo a normalization on real vectors with respect to given mean and standard deviation in each dimension.
 class InverseDocumentFrequencyNormalization
          Normalization for text frequency vectors, using the inverse document frequency.
 class TFIDFNormalization
          Perform full TF-IDF Normalization as commonly used in text mining.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.parser
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.parser
 interface LinebasedParser
          A parser that can parse single line.
 interface Parser
          A Parser shall provide a ParsingResult by parsing an InputStream.
 

Classes in de.lmu.ifi.dbs.elki.datasource.parser that implement InspectionUtilFrequentlyScanned
 class ArffParser
          Parser to load WEKA .arff files into ELKI.
 class BitVectorLabelParser
          Provides a parser for parsing one BitVector per line, bits separated by whitespace.
 class DoubleVectorLabelParser
           Provides a parser for parsing one point per line, attributes separated by whitespace.
 class DoubleVectorLabelTransposingParser
          Parser reads points transposed.
 class FloatVectorLabelParser
           Provides a parser for parsing one point per line, attributes separated by whitespace.
 class NumberVectorLabelParser<V extends NumberVector<?,?>>
           Provides a parser for parsing one point per line, attributes separated by whitespace.
 class ParameterizationFunctionLabelParser
          Provides a parser for parsing one point per line, attributes separated by whitespace.
 class SimplePolygonParser
          Parser to load polygon data (2D and 3D only) from a simple format.
 class SparseBitVectorLabelParser
          Provides a parser for parsing one sparse BitVector per line, where the indices of the one-bits are separated by whitespace.
 class SparseFloatVectorLabelParser
           Provides a parser for parsing one point per line, attributes separated by whitespace.
 class TermFrequencyParser
          A parser to load term frequency data, which essentially are sparse vectors with text keys.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction
 interface DBIDDistanceFunction<D extends Distance<?>>
          Distance functions valid in a database context only (i.e. for DBIDs) For any "distance" that cannot be computed for arbitrary objects, only those that exist in the database and referenced by their ID.
 interface DistanceFunction<O,D extends Distance<?>>
          Base interface for any kind of distances.
 interface FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?,?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
          Interface for local PCA based preprocessors.
 interface IndexBasedDistanceFunction<O,D extends Distance<D>>
          Distance function relying on an index (such as preprocessed neighborhoods).
 interface PrimitiveDistanceFunction<O,D extends Distance<?>>
          Primitive distance function that is defined on some kind of object.
 interface PrimitiveDoubleDistanceFunction<O>
          Interface for distance functions that can provide a raw double value.
 interface SpatialPrimitiveDistanceFunction<V extends SpatialComparable,D extends Distance<D>>
          API for a spatial primitive distance function.
 interface SpatialPrimitiveDoubleDistanceFunction<V extends SpatialComparable>
          Interface combining spatial primitive distance functions with primitive number distance functions.
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction that implement InspectionUtilFrequentlyScanned
 class AbstractCosineDistanceFunction
          Abstract base class for Cosine and ArcCosine distances.
 class AbstractDatabaseDistanceFunction<O,D extends Distance<D>>
          Abstract super class for distance functions needing a database context.
 class AbstractDBIDDistanceFunction<D extends Distance<D>>
          AbstractDistanceFunction provides some methods valid for any extending class.
 class AbstractIndexBasedDistanceFunction<O,I extends Index,D extends Distance<D>>
          Abstract super class for distance functions needing a database index.
 class AbstractPrimitiveDistanceFunction<O,D extends Distance<D>>
          AbstractDistanceFunction provides some methods valid for any extending class.
 class AbstractVectorDoubleDistanceFunction
          Abstract base class for the most common family of distance functions: defined on number vectors and returning double values.
 class ArcCosineDistanceFunction
          Cosine distance function for feature vectors.
 class CosineDistanceFunction
          Cosine distance function for feature vectors.
 class EuclideanDistanceFunction
          Provides the Euclidean distance for FeatureVectors.
 class LocallyWeightedDistanceFunction<V extends NumberVector<?,?>>
          Provides a locally weighted distance function.
 class LPNormDistanceFunction
          Provides a LP-Norm for FeatureVectors.
 class ManhattanDistanceFunction
          Manhattan distance function to compute the Manhattan distance for a pair of FeatureVectors.
 class MaximumDistanceFunction
          Maximum distance function to compute the Maximum distance for a pair of FeatureVectors.
 class MinimumDistanceFunction
          Maximum distance function to compute the Minimum distance for a pair of FeatureVectors.
 class MinKDistance<O,D extends Distance<D>>
          A distance that is at least the distance to the kth nearest neighbor.
 class ProxyDistanceFunction<O,D extends Distance<D>>
          Distance function to proxy computations to another distance (that probably was run before).
 class RandomStableDistanceFunction
          This is a dummy distance providing random values (obviously not metrical), useful mostly for unit tests and baseline evaluations: obviously this distance provides no benefit whatsoever.
 class SharedNearestNeighborJaccardDistanceFunction<O>
          SharedNearestNeighborJaccardDistanceFunction computes the Jaccard coefficient, which is a proper distance metric.
 class SquaredEuclideanDistanceFunction
          Provides the squared Euclidean distance for FeatureVectors.
 class WeightedDistanceFunction
          Provides the Weighted distance for feature vectors.
 class WeightedLPNormDistanceFunction
          Weighted version of the Euclidean distance function.
 class WeightedSquaredEuclideanDistanceFunction
          Provides the squared Euclidean distance for FeatureVectors.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that implement InspectionUtilFrequentlyScanned
 class AbstractSimilarityAdapter<O>
          Adapter from a normalized similarity function to a distance function.
 class SimilarityAdapterArccos<O>
          Adapter from a normalized similarity function to a distance function using arccos(sim).
 class SimilarityAdapterLinear<O>
          Adapter from a normalized similarity function to a distance function using 1 - sim.
 class SimilarityAdapterLn<O>
          Adapter from a normalized similarity function to a distance function using -log(sim).
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that implement InspectionUtilFrequentlyScanned
 class HistogramIntersectionDistanceFunction
          Intersection distance for color histograms.
 class HSBHistogramQuadraticDistanceFunction
          Distance function for HSB color histograms based on a quadratic form and color similarity.
 class RGBHistogramQuadraticDistanceFunction
          Distance function for RGB color histograms based on a quadratic form and color similarity.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation that implement InspectionUtilFrequentlyScanned
 class ERiCDistanceFunction
          Provides a distance function for building the hierarchy in the ERiC algorithm.
 class PCABasedCorrelationDistanceFunction
          Provides the correlation distance for real valued vectors.
 class PearsonCorrelationDistanceFunction
          Pearson correlation distance function for feature vectors.
 class SquaredPearsonCorrelationDistanceFunction
          Squared Pearson correlation distance function for feature vectors.
 class WeightedPearsonCorrelationDistanceFunction
          Pearson correlation distance function for feature vectors.
 class WeightedSquaredPearsonCorrelationDistanceFunction
          Squared Pearson correlation distance function for feature vectors.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.external
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.external that implement InspectionUtilFrequentlyScanned
 class DiskCacheBasedDoubleDistanceFunction
          Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file.
 class DiskCacheBasedFloatDistanceFunction
          Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file.
 class FileBasedDoubleDistanceFunction
          Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file.
 class FileBasedFloatDistanceFunction
          Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.geo
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.geo that implement InspectionUtilFrequentlyScanned
 class DimensionSelectingLatLngDistanceFunction
          Distance function for 2D vectors in Latitude, Longitude form.
 class LatLngDistanceFunction
          Distance function for 2D vectors in Latitude, Longitude form.
 class LngLatDistanceFunction
          Distance function for 2D vectors in Longitude, Latitude form.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that implement InspectionUtilFrequentlyScanned
 class AbstractDimensionsSelectingDoubleDistanceFunction<V extends FeatureVector<?,?>>
          Provides a distance function that computes the distance (which is a double distance) between feature vectors only in specified dimensions.
 class AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
          Abstract super class for all preference vector based correlation distance functions.
 class DimensionSelectingDistanceFunction
          Provides a distance function that computes the distance between feature vectors as the absolute difference of their values in a specified dimension.
 class DimensionsSelectingEuclideanDistanceFunction
          Provides a distance function that computes the Euclidean distance between feature vectors only in specified dimensions.
 class DiSHDistanceFunction
          Distance function used in the DiSH algorithm.
 class HiSCDistanceFunction<V extends NumberVector<?,?>>
          Distance function used in the HiSC algorithm.
 class SubspaceDistanceFunction
          Provides a distance function to determine a kind of correlation distance between two points, which is a pair consisting of the distance between the two subspaces spanned by the strong eigenvectors of the two points and the affine distance between the two subspaces.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries that implement InspectionUtilFrequentlyScanned
 class AbstractEditDistanceFunction
          Provides the Edit Distance for FeatureVectors.
 class DTWDistanceFunction
          Provides the Dynamic Time Warping distance for FeatureVectors.
 class EDRDistanceFunction
          Provides the Edit Distance on Real Sequence distance for FeatureVectors.
 class ERPDistanceFunction
          Provides the Edit Distance With Real Penalty distance for FeatureVectors.
 class LCSSDistanceFunction
          Provides the Longest Common Subsequence distance for FeatureVectors.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.similarityfunction
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.similarityfunction
 interface DBIDSimilarityFunction<D extends Distance<D>>
          Interface DBIDSimilarityFunction describes the requirements of any similarity function defined over object IDs.
 interface IndexBasedSimilarityFunction<O,D extends Distance<D>>
          Interface for preprocessor/index based similarity functions.
 interface NormalizedPrimitiveSimilarityFunction<O,D extends Distance<D>>
          Marker interface for similarity functions working on primitive objects, and limited to the 0-1 value range.
 interface NormalizedSimilarityFunction<O,D extends Distance<?>>
          Marker interface to signal that the similarity function is normalized to produce values in the range of [0:1].
 interface PrimitiveSimilarityFunction<O,D extends Distance<D>>
          Interface SimilarityFunction describes the requirements of any similarity function.
 interface SimilarityFunction<O,D extends Distance<?>>
          Interface SimilarityFunction describes the requirements of any similarity function.
 

Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction that implement InspectionUtilFrequentlyScanned
 class AbstractDBIDSimilarityFunction<D extends Distance<D>>
          Abstract super class for distance functions needing a preprocessor.
 class AbstractIndexBasedSimilarityFunction<O,I extends Index,R,D extends Distance<D>>
          Abstract super class for distance functions needing a preprocessor.
 class AbstractPrimitiveSimilarityFunction<O,D extends Distance<D>>
          Base implementation of a similarity function.
 class FractionalSharedNearestNeighborSimilarityFunction<O>
          SharedNearestNeighborSimilarityFunction with a pattern defined to accept Strings that define a non-negative Integer.
 class SharedNearestNeighborSimilarityFunction<O>
          SharedNearestNeighborSimilarityFunction with a pattern defined to accept Strings that define a non-negative Integer.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
 

Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that implement InspectionUtilFrequentlyScanned
 class FooKernelFunction
          Provides an experimental KernelDistanceFunction for NumberVectors.
 class LinearKernelFunction<O extends NumberVector<?,?>>
          Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by V1^T*V2.
 class PolynomialKernelFunction
          Provides a polynomial Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by (V1^T*V2)^degree.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index
 interface IndexFactory<V,I extends Index>
          Factory interface for indexes.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed
static interface LocalProjectionIndex.Factory<V extends NumberVector<?,?>,I extends LocalProjectionIndex<V,?>>
          Factory
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.knn that implement InspectionUtilFrequentlyScanned
static class AbstractMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
          The parameterizable factory.
static class MaterializeKNNAndRKNNPreprocessor.Factory<O,D extends Distance<D>>
          The parameterizable factory.
static class MaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
          The parameterizable factory.
static class MetricalIndexApproximationMaterializeKNNPreprocessor.Factory<O extends NumberVector<? super O,?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry<D>>
          The parameterizable factory.
static class PartitionApproximationMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
          The parameterizable factory.
static class SpatialApproximationMaterializeKNNPreprocessor.Factory<D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
          The actual preprocessor instance.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
static interface FilteredLocalPCAIndex.Factory<NV extends NumberVector<?,?>,I extends FilteredLocalPCAIndex<NV>>
          Factory interface
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.localpca that implement InspectionUtilFrequentlyScanned
static class AbstractFilteredPCAIndex.Factory<NV extends NumberVector<NV,?>,I extends AbstractFilteredPCAIndex<NV>>
          Factory class
static class KNNQueryFilteredPCAIndex.Factory<V extends NumberVector<V,?>>
          Factory class
static class RangeQueryFilteredPCAIndex.Factory<V extends NumberVector<V,?>>
          Factory class
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.preference
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.preference
static interface PreferenceVectorIndex.Factory<V extends NumberVector<?,?>,I extends PreferenceVectorIndex<V>>
          Factory interface
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.preference that implement InspectionUtilFrequentlyScanned
static class AbstractPreferenceVectorIndex.Factory<V extends NumberVector<?,?>,I extends PreferenceVectorIndex<V>>
          Factory class
static class DiSHPreferenceVectorIndex.Factory<V extends NumberVector<?,?>>
          Factory class
static class HiSCPreferenceVectorIndex.Factory<V extends NumberVector<?,?>>
          Factory class
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.snn
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.snn
static interface SharedNearestNeighborIndex.Factory<O,I extends SharedNearestNeighborIndex<O>>
          Factory interface
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.snn that implement InspectionUtilFrequentlyScanned
static class SharedNearestNeighborPreprocessor.Factory<O,D extends Distance<D>>
          Factory class
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj
static interface SubspaceProjectionIndex.Factory<NV extends NumberVector<?,?>,I extends SubspaceProjectionIndex<NV,?>>
          Factory interface
 

Classes in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj that implement InspectionUtilFrequentlyScanned
static class AbstractSubspaceProjectionIndex.Factory<NV extends NumberVector<?,?>,D extends Distance<D>,I extends AbstractSubspaceProjectionIndex<NV,D,?>>
          Factory class
static class FourCSubspaceIndex.Factory<V extends NumberVector<V,?>,D extends Distance<D>>
          Factory class for 4C preprocessors.
static class PreDeConSubspaceIndex.Factory<V extends NumberVector<? extends V,?>,D extends Distance<D>>
          Factory
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree
 

Classes in de.lmu.ifi.dbs.elki.index.tree that implement InspectionUtilFrequentlyScanned
 class TreeIndexFactory<O,I extends Index>
          Abstract base class for tree-based indexes.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants that implement InspectionUtilFrequentlyScanned
 class AbstractMTreeFactory<O,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>,I extends AbstractMTree<O,D,N,E> & Index>
          Abstract factory for various MTrees
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees that implement InspectionUtilFrequentlyScanned
 class AbstractMkTreeUnifiedFactory<O,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>,I extends AbstractMkTree<O,D,N,E> & Index>
          Abstract factory for various Mk-Trees
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp that implement InspectionUtilFrequentlyScanned
 class MkAppTreeFactory<O,D extends NumberDistance<D,?>>
          Factory for a MkApp-Tree
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop that implement InspectionUtilFrequentlyScanned
 class MkCopTreeFactory<O,D extends NumberDistance<D,?>>
          Factory for a MkCoPTree-Tree
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax that implement InspectionUtilFrequentlyScanned
 class MkMaxTreeFactory<O,D extends Distance<D>>
          Factory for MkMaxTrees
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab that implement InspectionUtilFrequentlyScanned
 class MkTabTreeFactory<O,D extends Distance<D>>
          Factory for MkTabTrees
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree that implement InspectionUtilFrequentlyScanned
 class MTreeFactory<O,D extends Distance<D>>
          Factory for a M-Tree
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants that implement InspectionUtilFrequentlyScanned
 class AbstractRStarTreeFactory<O extends NumberVector<O,?>,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,I extends AbstractRStarTree<N,E> & Index>
          Abstract factory for R*-Tree based trees.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk that implement InspectionUtilFrequentlyScanned
 class AbstractBulkSplit
          Encapsulates the required parameters for a bulk split of a spatial index.
 class MaxExtensionBulkSplit
          Split strategy for bulk-loading a spatial tree where the split axes are the dimensions with maximum extension.
 class ZCurveBulkSplit
          Bulk split that orders object by their Z curve position, then splits them into pages accordingly.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu that implement InspectionUtilFrequentlyScanned
 class DeLiCluTreeFactory<O extends NumberVector<O,?>>
          Factory for DeLiClu R*-Trees.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar that implement InspectionUtilFrequentlyScanned
 class RStarTreeFactory<O extends NumberVector<O,?>>
          Factory for regular R*-Trees.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util
 interface InsertionStrategy
          Interface for implementing insertion strategies, i.e. in which path of the tree to insert the new element.
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util that implement InspectionUtilFrequentlyScanned
 class ApproximateLeastOverlapInsertionStrategy
          Insertion strategy that exhaustively tests all childs for the least overlap when inserting.
 class LeastOverlapInsertionStrategy
          Insertion strategy that exhaustively tests all childs for the least overlap when inserting.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 interface EigenPairFilter
          The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors and their corresponding eigenvalues) which are a result of a Variance Analysis Algorithm, e.g.
 

Classes in de.lmu.ifi.dbs.elki.math.linearalgebra.pca that implement InspectionUtilFrequentlyScanned
 class AbstractCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
          Abstract class with the task of computing a Covariance matrix to be used in PCA.
 class CompositeEigenPairFilter
          The CompositeEigenPairFilter can be used to build a chain of eigenpair filters.
 class FirstNEigenPairFilter
          The FirstNEigenPairFilter marks the n highest eigenpairs as strong eigenpairs, where n is a user specified number.
 class LimitEigenPairFilter
          The LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue below the specified threshold (relative or absolute) as weak eigenpairs, the others are marked as strong eigenpairs.
 class NormalizingEigenPairFilter
          The NormalizingEigenPairFilter normalizes all eigenvectors s.t.
 class PCAFilteredRunner<V extends NumberVector<? extends V,?>>
          PCA runner that will do dimensionality reduction.
 class PCARunner<V extends NumberVector<? extends V,?>>
          Class to run PCA on given data.
 class PercentageEigenPairFilter
          The PercentageEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is higher than the given percentage of the sum of all eigenvalues as strong eigenpairs.
 class ProgressiveEigenPairFilter
          The ProgressiveEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is higher than the given percentage of the sum of all eigenvalues as strong eigenpairs.
 class RelativeEigenPairFilter
          The RelativeEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs who are a certain factor above the average of the remaining eigenvalues.
 class SignificantEigenPairFilter
          The SignificantEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and chooses the contrast of an Eigenvalue to the remaining Eigenvalues is maximal.
 class StandardCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
          Class for building a "traditional" covariance matrix.
 class WeakEigenPairFilter
          The WeakEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and returns the first eigenpairs who are above the average mark as "strong", the others as "weak".
 class WeightedCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
          CovarianceMatrixBuilder with weights.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
 interface WeightFunction
          WeightFunction interface that allows the use of various distance-based weight functions.
 

Classes in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions that implement InspectionUtilFrequentlyScanned
 class ConstantWeight
          Constant Weight function The result is always 1.0
 class ErfcStddevWeight
          Gaussian Error Function Weight function, scaled using stddev.
 class ErfcWeight
          Gaussian Error Function Weight function, scaled such that the result it 0.1 at distance == max erfc(1.1630871536766736 * distance / max) The value of 1.1630871536766736 is erfcinv(0.1), to achieve the intended scaling.
 class ExponentialStddevWeight
          Exponential Weight function, scaled such that the result it 0.1 at distance == max stddev * exp(-.5 * distance/stddev) This is similar to the Gaussian weight function, except distance/stddev is not squared.
 class ExponentialWeight
          Exponential Weight function, scaled such that the result it 0.1 at distance == max exp(-2.3025850929940455 * distance/max) This is similar to the Gaussian weight function, except distance/max is not squared
 class GaussStddevWeight
          Gaussian Weight function, scaled such using standard deviation factor * exp(-.5 * (distance/stddev)^2) with factor being 1 / sqrt(2 * PI)
 class GaussWeight
          Gaussian Weight function, scaled such that the result it 0.1 at distance == max exp(-2.3025850929940455 * (distance/max)^2)
 class InverseLinearWeight
          Inverse Linear Weight Function.
 class InverseProportionalStddevWeight
          Inverse proportional weight function, scaled using the standard deviation. 1 / (1 + distance/stddev)
 class InverseProportionalWeight
          Inverse proportional weight function, scaled using the maximum. 1 / (1 + distance/max)
 class LinearWeight
          Linear weight function, scaled using the maximum such that it goes from 1.0 to 0.1 1 - 0.9 * (distance/max)
 class QuadraticStddevWeight
          Quadratic weight function, scaled using the standard deviation.
 class QuadraticWeight
          Quadratic weight function, scaled using the maximum to reach 0.1 at that point. 1.0 - 0.9 * (distance/max)^2
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.result
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.result
 interface ResultHandler
          Interface for any class that can handle results
 

Classes in de.lmu.ifi.dbs.elki.result that implement InspectionUtilFrequentlyScanned
 class DiscardResultHandler
          A dummy result handler that discards the actual result, for use in benchmarks.
 class KMLOutputHandler
          Class to handle KML output.
 class ResultWriter
          Result handler that feeds the data into a TextWriter
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.optionhandling
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.optionhandling
 interface Parameterizable
          Interface to define the required methods for command line interaction.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.referencepoints
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.referencepoints
 interface ReferencePointsHeuristic<O>
          Simple Interface for an heuristic to pick reference points.
 

Classes in de.lmu.ifi.dbs.elki.utilities.referencepoints that implement InspectionUtilFrequentlyScanned
 class AxisBasedReferencePoints<V extends NumberVector<V,?>>
          Strategy to pick reference points by placing them on the axis ends.
 class FullDatabaseReferencePoints<O extends NumberVector<? extends O,?>>
          Strategy to use the complete database as reference points.
 class GridBasedReferencePoints<V extends NumberVector<V,?>>
          Grid-based strategy to pick reference points.
 class RandomGeneratedReferencePoints<V extends NumberVector<V,?>>
          Reference points generated randomly within the used data space.
 class RandomSampleReferencePoints<V extends NumberVector<? extends V,?>>
          Random-Sampling strategy for picking reference points.
 class StarBasedReferencePoints<V extends NumberVector<V,?>>
          Star-based strategy to pick reference points.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling
 interface ScalingFunction
          Interface for scaling functions used e.g. by outlier evaluation such as Histograms and visualization.
 interface StaticScalingFunction
          Interface for Scaling functions that do NOT depend on analyzing the data set.
 

Classes in de.lmu.ifi.dbs.elki.utilities.scaling that implement InspectionUtilFrequentlyScanned
 class ClipScaling
          Scale implementing a simple clipping.
 class GammaScaling
          Non-linear scaling function using a Gamma curve.
 class IdentityScaling
          The trivial "identity" scaling function.
 class LinearScaling
          Simple linear scaling function.
 class MinusLogScaling
          Scaling function to invert values by computing -1 * Math.log(x)
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling.outlier
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling.outlier
 interface OutlierScalingFunction
          Interface for scaling functions used by Outlier evaluation such as Histograms and visualization.
 

Classes in de.lmu.ifi.dbs.elki.utilities.scaling.outlier that implement InspectionUtilFrequentlyScanned
 class HeDESNormalizationOutlierScaling
          Normalization used by HeDES
 class MinusLogGammaScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF.
 class MinusLogStandardDeviationScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1].
 class MixtureModelOutlierScalingFunction
          Tries to fit a mixture model (exponential for inliers and gaussian for outliers) to the outlier score distribution.
 class MultiplicativeInverseScaling
          Scaling function to invert values basically by computing 1/x, but in a variation that maps the values to the [0:1] interval and avoiding division by 0.
 class OutlierGammaScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1] by assuming a Gamma distribution on the values.
 class OutlierLinearScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1].
 class OutlierMinusLogScaling
          Scaling function to invert values by computing -1 * Math.log(x) Useful for example for scaling ABOD, but see MinusLogStandardDeviationScaling and MinusLogGammaScaling for more advanced scalings for this algorithm.
 class OutlierSqrtScaling
          Scaling that can map arbitrary positive values to a value in the range of [0:1].
 class RankingPseudoOutlierScaling
          This is a pseudo outlier scoring obtained by only considering the ranks of the objects.
 class SigmoidOutlierScalingFunction
          Tries to fit a sigmoid to the outlier scores and use it to convert the values to probability estimates in the range of 0.0 to 1.0
 class SqrtStandardDeviationScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1].
 class StandardDeviationScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1].
 class TopKOutlierScaling
          Outlier scaling function that only keeps the top k outliers.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization
 

Classes in de.lmu.ifi.dbs.elki.visualization that implement InspectionUtilFrequentlyScanned
 class VisualizerParameterizer
          Utility class to determine the visualizers for a result class.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.gui
 

Classes in de.lmu.ifi.dbs.elki.visualization.gui that implement InspectionUtilFrequentlyScanned
 class ResultVisualizer
          Handler to process and visualize a Result.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.projector
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.projector
 interface ProjectorFactory
          A projector is responsible for adding projections to the visualization by detecting appropriate relations in the database.
 

Classes in de.lmu.ifi.dbs.elki.visualization.projector that implement InspectionUtilFrequentlyScanned
 class HistogramFactory
          Produce one-dimensional projections.
 class OPTICSProjectorFactory
          Produce OPTICS plot projections
 class ScatterPlotFactory
          Produce scatterplot projections.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers
 interface VisFactory
          Defines the requirements for a visualizer.
 

Classes in de.lmu.ifi.dbs.elki.visualization.visualizers that implement InspectionUtilFrequentlyScanned
 class AbstractVisFactory
          Abstract superclass for Visualizers (aka: Visualization Factories).
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.optics
 

Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.optics that implement InspectionUtilFrequentlyScanned
static class OPTICSClusterVisualization.Factory
          Factory class for OPTICS plot selections.
static class OPTICSPlotCutVisualization.Factory
          Factory class
static class OPTICSPlotSelectionVisualization.Factory
          Factory class for OPTICS plot selections.
static class OPTICSPlotVisualizer.Factory
          Factory class for OPTICS plot.
static class OPTICSSteepAreaVisualization.Factory
          Factory class for OPTICS plot selections.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d
 

Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d that implement InspectionUtilFrequentlyScanned
static class P1DHistogramVisualizer.Factory<NV extends NumberVector<NV,?>>
          Visualizer factory for 1D histograms
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d
 

Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d that implement InspectionUtilFrequentlyScanned
static class AxisVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for axis visualizations
static class BubbleVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for producing bubble visualizations
static class ClusterConvexHullVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for visualizers to generate an SVG-Element containing the convex hull of a cluster.
static class ClusteringVisualization.Factory<NV extends NumberVector<NV,?>>
          Visualization factory
static class ClusterMeanVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for visualizers to generate an SVG-Element containing a marker for the mean in a KMeans-Clustering
static class ClusterOrderVisualization.Factory<NV extends NumberVector<NV,?>>
          Visualize an OPTICS cluster order by drawing connection lines.
static class DotVisualization.Factory<NV extends NumberVector<NV,?>>
          The visualization factory
static class EMClusterVisualization.Factory<NV extends NumberVector<NV,?>>
          Visualizer for generating SVG-Elements containing ellipses for first, second and third standard deviation
static class MoveObjectsToolVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for tool visualizations for changing objects in the database
static class PolygonVisualization.Factory
          The visualization factory
static class ReferencePointsVisualization.Factory<NV extends NumberVector<NV,?>>
          Generates a SVG-Element visualizing reference points.
static class SelectionConvexHullVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for visualizers to generate an SVG-Element containing the convex hull of the selected points
static class SelectionCubeVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for visualizers to generate an SVG-Element containing a cube as marker representing the selected range for each dimension
static class SelectionDotVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for visualizers to generate an SVG-Element containing dots as markers representing the selected Database's objects.
static class SelectionToolCubeVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for tool visualizations for selecting ranges and the inclosed objects
static class SelectionToolDotVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for tool visualizations for selecting objects
static class ToolBox2DVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for visualizers for a toolbox
static class TooltipScoreVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory for tooltip visualizers
static class TooltipStringVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory
static class TreeMBRVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory
static class TreeSphereVisualization.Factory<NV extends NumberVector<NV,?>>
          Factory
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
 

Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj that implement InspectionUtilFrequentlyScanned
 class ClusterEvaluationVisFactory
          Pseudo-Visualizer, that lists the cluster evaluation results found.
 class CurveVisFactory
          Visualizer to render a simple 2D curve such as a ROC curve.
 class HistogramVisFactory
          Visualizer to draw histograms.
 class KeyVisFactory
          Pseudo-Visualizer, that gives the key for a clustering.
 class LabelVisFactory
          Trivial "visualizer" that displays a static label.
static class PixmapVisualizer.Factory
          Factory class for pixmap visualizers.
 class SettingsVisFactory
          Pseudo-Visualizer, that lists the settings of the algorithm-
static class SimilarityMatrixVisualizer.Factory
          Factory class for pixmap visualizers.
 

Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.workflow
 

Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.workflow
 interface WorkflowStep
          Trivial interface for workflow steps.
 

Classes in de.lmu.ifi.dbs.elki.workflow that implement InspectionUtilFrequentlyScanned
 class AlgorithmStep
          The "algorithms" step, where data is analyzed.
 class EvaluationStep
          The "evaluation" step, where data is analyzed.
 class InputStep
          Data input step of the workflow.
 class LoggingStep
          Pseudo-step to configure logging / verbose mode.
 class OutputStep
          The "output" step, where data is analyzed.
 


Release 0.4.0 (2011-09-20_1324)