|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use InspectionUtilFrequentlyScanned | |
---|---|
de.lmu.ifi.dbs.elki | ELKI framework "Environment for Developing KDD-Applications Supported by Index-Structures"
KDDTask is the main class of the ELKI-Framework
for command-line interaction. |
de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood | Spatial outlier neighborhood classes |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted | Weighted Neighborhood definitions. |
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial | Trivial outlier detection algorithms: no outliers, all outliers, label outliers. |
de.lmu.ifi.dbs.elki.algorithm.statistics | Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) |
de.lmu.ifi.dbs.elki.application | Base classes for stand alone applications. |
de.lmu.ifi.dbs.elki.application.cache | Utility applications for the persistence layer such as distance cache builders. |
de.lmu.ifi.dbs.elki.application.jsmap | JavaScript based map client - server architecture. |
de.lmu.ifi.dbs.elki.application.visualization | Visualization applications in ELKI. |
de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. |
de.lmu.ifi.dbs.elki.data.images | Package for processing image data (e.g. compute color histograms) |
de.lmu.ifi.dbs.elki.database | ELKI database layer - loading, storing, indexing and accessing data |
de.lmu.ifi.dbs.elki.datasource | Data normalization (and reconstitution) of data sets. |
de.lmu.ifi.dbs.elki.datasource.filter | Data filtering, in particular for normalization and projection. |
de.lmu.ifi.dbs.elki.datasource.parser | Parsers for different file formats and data types. |
de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. |
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | Distance functions deriving distances from e.g. similarity measures |
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.external | Distance functions using external data sources. |
de.lmu.ifi.dbs.elki.distance.distancefunction.geo | Geographic (earth) distance functions. |
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | Distance functions based on subspaces. |
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries | Distance functions designed for time series. |
de.lmu.ifi.dbs.elki.distance.similarityfunction | Similarity functions. |
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | Kernel functions. |
de.lmu.ifi.dbs.elki.index | Index structure implementations |
de.lmu.ifi.dbs.elki.index.preprocessed | Index structure based on preprocessors |
de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. |
de.lmu.ifi.dbs.elki.index.preprocessed.localpca | Index using a preprocessed local PCA. |
de.lmu.ifi.dbs.elki.index.preprocessed.preference | Indexes storing preference vectors. |
de.lmu.ifi.dbs.elki.index.preprocessed.snn | Indexes providing nearest neighbor sets |
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | Index using a preprocessed local subspaces. |
de.lmu.ifi.dbs.elki.index.tree | Tree-based index structures |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants | M-Tree and variants. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees | Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | MkAppTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | MkCoPTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | MkMaxTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | MkTabTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | MTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants | R*-Tree and variants. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk | Packages for bulk-loading R*-Trees. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | DeLiCluTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | RStarTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util | Utilities for R*-Tree and variants. |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions | Weight functions used in weighted PCA via WeightedCovarianceMatrixBuilder |
de.lmu.ifi.dbs.elki.result | Result types, representation and handling |
de.lmu.ifi.dbs.elki.utilities.optionhandling | Parameter handling and option descriptions. |
de.lmu.ifi.dbs.elki.utilities.referencepoints | Package containing strategies to obtain reference points Shared code for various algorithms that use reference points. |
de.lmu.ifi.dbs.elki.utilities.scaling | Scaling functions: linear, logarithmic, gamma, clipping, ... |
de.lmu.ifi.dbs.elki.utilities.scaling.outlier | Scaling of Outlier scores, that require a statistical analysis of the occurring values |
de.lmu.ifi.dbs.elki.visualization | Visualization package of ELKI. |
de.lmu.ifi.dbs.elki.visualization.gui | Package to provide a visualization GUI. |
de.lmu.ifi.dbs.elki.visualization.projector | Projectors are responsible for finding appropriate projections for data relations. |
de.lmu.ifi.dbs.elki.visualization.visualizers | Visualizers for various results |
de.lmu.ifi.dbs.elki.visualization.visualizers.optics | Visualizers that do work on OPTICS plots |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d | Visualizers based on 1D projections. |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj | Visualizers that do not use a particular projection. |
de.lmu.ifi.dbs.elki.workflow | Work flow packages, e.g. following the usual KDD model, closely related to CRISP-DM |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki |
---|
Classes in de.lmu.ifi.dbs.elki that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
KDDTask
Provides a KDDTask that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection implementing
DatabaseConnection . |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm | |
---|---|
interface |
Algorithm
Specifies the requirements for any algorithm that is to be executable by the main class. |
Classes in de.lmu.ifi.dbs.elki.algorithm that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractAlgorithm<R extends Result>
This class serves also as a model of implementing an algorithm within this framework. |
class |
AbstractDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>
Provides an abstract algorithm already setting the distance function. |
class |
AbstractPrimitiveDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>
Provides an abstract algorithm already setting the distance function. |
class |
APRIORI
Provides the APRIORI algorithm for Mining Association Rules. |
class |
DependencyDerivator<V extends NumberVector<V,?>,D extends Distance<D>>
Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA. |
class |
DummyAlgorithm<O extends NumberVector<?,?>>
Dummy Algorithm, which just iterates over all points once, doing a 10NN query each. |
class |
KNNDistanceOrder<O,D extends Distance<D>>
Provides an order of the kNN-distances for all objects within the database. |
class |
KNNJoin<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors. |
class |
MaterializeDistances<O,D extends NumberDistance<D,?>>
Algorithm to materialize all the distances in a data set. |
class |
NullAlgorithm
Null Algorithm, which does nothing. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering | |
---|---|
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
interface |
OPTICSTypeAlgorithm<D extends Distance<D>>
Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc. |
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
Abstract superclass for projected clustering algorithms, like PROCLUS
and ORCLUS . |
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. |
class |
DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database. |
class |
DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database. |
class |
EM<V extends NumberVector<V,?>>
Provides the EM algorithm (clustering by expectation maximization). |
class |
KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the k-means algorithm. |
class |
OPTICS<O,D extends Distance<D>>
OPTICS provides the OPTICS algorithm. |
class |
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction. |
class |
SLINK<O,D extends Distance<D>>
Efficient implementation of the Single-Link Algorithm SLINK of R. |
class |
SNNClustering<O>
Shared nearest neighbor clustering. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
CASH
Provides the CASH algorithm, an subspace clustering algorithm based on the hough transform. |
class |
COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions. |
class |
ERiC<V extends NumberVector<V,?>>
Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result. |
class |
FourC<V extends NumberVector<V,?>>
4C identifies local subgroups of data objects sharing a uniform correlation. |
class |
HiCO<V extends NumberVector<V,?>>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters. |
class |
ORCLUS<V extends NumberVector<V,?>>
ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high dimensional spaces. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
CLIQUE<V extends NumberVector<V,?>>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality. |
class |
DiSH<V extends NumberVector<V,?>>
Algorithm for detecting subspace hierarchies. |
class |
HiSC<V extends NumberVector<V,?>>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies of subspace clusters. |
class |
PreDeCon<V extends NumberVector<V,?>>
PreDeCon computes clusters of subspace preference weighted connected points. |
class |
PROCLUS<V extends NumberVector<V,?>>
Provides the PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces. |
class |
SUBCLU<V extends NumberVector<V,?>>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ByLabelClustering
Pseudo clustering using labels. |
class |
ByLabelHierarchicalClustering
Pseudo clustering using labels. |
class |
TrivialAllInOne
Trivial pseudo-clustering that just considers all points to be one big cluster. |
class |
TrivialAllNoise
Trivial pseudo-clustering that just considers all points to be noise. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier | |
---|---|
interface |
OutlierAlgorithm
Generic super interface for outlier detection algorithms. |
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ABOD<V extends NumberVector<V,?>>
Angle-Based Outlier Detection Outlier detection using variance analysis on angles, especially for high dimensional data sets. |
class |
AbstractAggarwalYuOutlier<V extends NumberVector<?,?>>
Abstract base class for the sparse-grid-cell based outlier detection of Aggarwal and Yu. |
class |
AbstractDBOutlier<O,D extends Distance<D>>
Simple distance based outlier detection algorithms. |
class |
AggarwalYuEvolutionary<V extends NumberVector<?,?>>
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to detect outliers for high dimensional data. |
class |
AggarwalYuNaive<V extends NumberVector<?,?>>
BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers. |
class |
DBOutlierDetection<O,D extends Distance<D>>
Simple distanced based outlier detection algorithm. |
class |
DBOutlierScore<O,D extends Distance<D>>
Compute percentage of neighbors in the given neighborhood with size d. |
class |
EMOutlier<V extends NumberVector<V,?>>
outlier detection algorithm using EM Clustering. |
class |
GaussianModel<V extends NumberVector<V,?>>
Outlier have smallest GMOD_PROB: the outlier scores is the probability density of the assumed distribution. |
class |
GaussianUniformMixture<V extends NumberVector<V,?>>
Outlier detection algorithm using a mixture model approach. |
class |
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence Outliers using Symmetric Relationship Reference: Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
class |
KNNOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the distance of an object to its k nearest neighbor. |
class |
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k nearest neighbors. |
class |
LDOF<O,D extends NumberDistance<D,?>>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database. |
class |
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral". |
class |
LOF<O,D extends NumberDistance<D,?>>
Algorithm to compute density-based local outlier factors in a database based on a specified parameter LOF.K_ID (-lof.k ). |
class |
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities Distance/density based algorithm similar to LOF to detect outliers, but with statistical methods to achieve better result stability. |
class |
OnlineLOF<O,D extends NumberDistance<D,?>>
Incremental version of the LOF Algorithm, supports insertions and
removals. |
class |
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local Outliers in a database. |
class |
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points. |
class |
SOD<V extends NumberVector<V,?>>
|
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.meta that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ExternalDoubleOutlierScore
External outlier detection scores, loading outlier scores from an external file. |
class |
FeatureBagging
A simple ensemble method called "Feature bagging" for outlier detection. |
class |
RescaleMetaOutlierAlgorithm
Scale another outlier score using the given scaling function. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
Abstract base class for distance-based spatial outlier detection methods. |
class |
AbstractNeighborhoodOutlier<O>
Abstract base class for spatial outlier detection methods using a spatial neighborhood. |
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers. |
class |
CTLuMeanMultipleAttributes<N,O extends NumberVector<?,?>>
Mean Approach is used to discover spatial outliers with multiple attributes. |
class |
CTLuMedianAlgorithm<N>
Median Algorithm of C. |
class |
CTLuMedianMultipleAttributes<N,O extends NumberVector<?,?>>
Median Approach is used to discover spatial outliers with multiple attributes. |
class |
CTLuMoranScatterplotOutlier<N>
Moran scatterplot outliers, based on the standardized deviation from the local and global means. |
class |
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks. |
class |
CTLuScatterplotOutlier<N>
Scatterplot-outlier is a spatial outlier detection method that performs a linear regression of object attributes and their neighbors average value. |
class |
CTLuZTestOutlier<N>
Detect outliers by comparing their attribute value to the mean and standard deviation of their neighborhood. |
class |
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers Reference: Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. |
class |
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial LOF variation. |
class |
TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood | |
---|---|
static interface |
NeighborSetPredicate.Factory<O>
Factory interface to produce instances. |
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
AbstractPrecomputedNeighborhood.Factory<O>
Factory class. |
static class |
ExtendedNeighborhood.Factory<O>
Factory class. |
static class |
ExternalNeighborhood.Factory
Factory class. |
static class |
PrecomputedKNearestNeighborNeighborhood.Factory<O,D extends Distance<D>>
Factory class to instantiate for a particular relation. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted | |
---|---|
static interface |
WeightedNeighborSetPredicate.Factory<O>
Factory interface to produce instances. |
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
LinearWeightedExtendedNeighborhood.Factory<O>
Factory class. |
static class |
UnweightedNeighborhoodAdapter.Factory<O>
Factory class |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ByLabelOutlier
Trivial algorithm that marks outliers by their label. |
class |
TrivialAllOutlier
Trivial method that claims all objects to be outliers. |
class |
TrivialNoOutlier
Trivial method that claims to find no outliers. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.algorithm.statistics |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.statistics that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
Algorithm to gather statistics over the distance distribution in the data set. |
class |
EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. |
class |
RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application |
---|
Classes in de.lmu.ifi.dbs.elki.application that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractApplication
AbstractApplication sets the values for flags verbose and help. |
class |
ComputeSingleColorHistogram
Application that computes the color histogram vector for a single image. |
class |
GeneratorXMLSpec
Generate a data set based on a specified model (using an XML specification) |
class |
KDDCLIApplication
Provides a KDDCLIApplication that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection
implementing
DatabaseConnection . |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application.cache |
---|
Classes in de.lmu.ifi.dbs.elki.application.cache that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix for random access. |
class |
CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix for random access. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application.jsmap |
---|
Classes in de.lmu.ifi.dbs.elki.application.jsmap that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
JSONResultHandler
Handle results by serving them via a web server to mapping applications. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.application.visualization |
---|
Classes in de.lmu.ifi.dbs.elki.application.visualization that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
User application to explore the k Nearest Neighbors for a given data set and distance function. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.data |
---|
Classes in de.lmu.ifi.dbs.elki.data that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
ClassLabel.Factory<L extends ClassLabel>
Class label factory |
static class |
HierarchicalClassLabel.Factory
Factory class |
static class |
SimpleClassLabel.Factory
Factory class |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.data.images |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.data.images | |
---|---|
interface |
ComputeColorHistogram
Interface for color histogram implementations. |
Classes in de.lmu.ifi.dbs.elki.data.images that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractComputeColorHistogram
Abstract class for color histogram computation. |
class |
ComputeHSBColorHistogram
Compute color histograms in a Hue-Saturation-Brightness model. |
class |
ComputeNaiveHSBColorHistogram
Compute color histograms in a Hue-Saturation-Brightness model. |
class |
ComputeNaiveRGBColorHistogram
Compute a (rather naive) RGB color histogram. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.database |
---|
Classes in de.lmu.ifi.dbs.elki.database that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
HashmapDatabase
Provides a mapping for associations based on a Hashtable and functions to get the next usable ID for insertion, making IDs reusable after deletion of the entry. |
class |
StaticArrayDatabase
This database class uses array-based storage and thus does not allow for dynamic insert, delete and update operations. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource | |
---|---|
interface |
DatabaseConnection
DatabaseConnection is used to load data into a database. |
Classes in de.lmu.ifi.dbs.elki.datasource that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractDatabaseConnection
Abstract super class for all database connections. |
class |
EmptyDatabaseConnection
Pseudo database that is empty. |
class |
ExternalIDJoinDatabaseConnection
Joins multiple data sources by their label |
class |
FileBasedDatabaseConnection
Provides a file based database connection based on the parser to be set. |
class |
GeneratorXMLDatabaseConnection
|
class |
InputStreamDatabaseConnection
Provides a database connection expecting input from an input stream such as stdin. |
class |
LabelJoinDatabaseConnection
Joins multiple data sources by their label |
class |
RandomDoubleVectorDatabaseConnection
Produce a database of random double vectors with each dimension in [0:1] |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.filter |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.filter | |
---|---|
interface |
Normalization<O>
Normalization performs a normalization on a set of feature vectors and is capable to transform a set of feature vectors to the original attribute ranges. |
Classes in de.lmu.ifi.dbs.elki.datasource.filter that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractNormalization<O>
Abstract super class for all normalizations. |
class |
AttributeWiseErfNormalization<O extends NumberVector<O,?>>
Attribute-wise Normalization using the error function. |
class |
AttributeWiseMinMaxNormalization<V extends NumberVector<V,?>>
Class to perform and undo a normalization on real vectors with respect to given minimum and maximum in each dimension. |
class |
AttributeWiseVarianceNormalization<V extends NumberVector<V,?>>
Class to perform and undo a normalization on real vectors with respect to given mean and standard deviation in each dimension. |
class |
InverseDocumentFrequencyNormalization
Normalization for text frequency vectors, using the inverse document frequency. |
class |
TFIDFNormalization
Perform full TF-IDF Normalization as commonly used in text mining. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.parser |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.datasource.parser | |
---|---|
interface |
LinebasedParser
A parser that can parse single line. |
interface |
Parser
A Parser shall provide a ParsingResult by parsing an InputStream. |
Classes in de.lmu.ifi.dbs.elki.datasource.parser that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ArffParser
Parser to load WEKA .arff files into ELKI. |
class |
BitVectorLabelParser
Provides a parser for parsing one BitVector per line, bits separated by whitespace. |
class |
DoubleVectorLabelParser
Provides a parser for parsing one point per line, attributes separated by whitespace. |
class |
DoubleVectorLabelTransposingParser
Parser reads points transposed. |
class |
FloatVectorLabelParser
Provides a parser for parsing one point per line, attributes separated by whitespace. |
class |
NumberVectorLabelParser<V extends NumberVector<?,?>>
Provides a parser for parsing one point per line, attributes separated by whitespace. |
class |
ParameterizationFunctionLabelParser
Provides a parser for parsing one point per line, attributes separated by whitespace. |
class |
SimplePolygonParser
Parser to load polygon data (2D and 3D only) from a simple format. |
class |
SparseBitVectorLabelParser
Provides a parser for parsing one sparse BitVector per line, where the indices of the one-bits are separated by whitespace. |
class |
SparseFloatVectorLabelParser
Provides a parser for parsing one point per line, attributes separated by whitespace. |
class |
TermFrequencyParser
A parser to load term frequency data, which essentially are sparse vectors with text keys. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction | |
---|---|
interface |
DBIDDistanceFunction<D extends Distance<?>>
Distance functions valid in a database context only (i.e. for DBIDs) For any "distance" that cannot be computed for arbitrary objects, only those that exist in the database and referenced by their ID. |
interface |
DistanceFunction<O,D extends Distance<?>>
Base interface for any kind of distances. |
interface |
FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?,?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
Interface for local PCA based preprocessors. |
interface |
IndexBasedDistanceFunction<O,D extends Distance<D>>
Distance function relying on an index (such as preprocessed neighborhoods). |
interface |
PrimitiveDistanceFunction<O,D extends Distance<?>>
Primitive distance function that is defined on some kind of object. |
interface |
PrimitiveDoubleDistanceFunction<O>
Interface for distance functions that can provide a raw double value. |
interface |
SpatialPrimitiveDistanceFunction<V extends SpatialComparable,D extends Distance<D>>
API for a spatial primitive distance function. |
interface |
SpatialPrimitiveDoubleDistanceFunction<V extends SpatialComparable>
Interface combining spatial primitive distance functions with primitive number distance functions. |
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractCosineDistanceFunction
Abstract base class for Cosine and ArcCosine distances. |
class |
AbstractDatabaseDistanceFunction<O,D extends Distance<D>>
Abstract super class for distance functions needing a database context. |
class |
AbstractDBIDDistanceFunction<D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class. |
class |
AbstractIndexBasedDistanceFunction<O,I extends Index,D extends Distance<D>>
Abstract super class for distance functions needing a database index. |
class |
AbstractPrimitiveDistanceFunction<O,D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class. |
class |
AbstractVectorDoubleDistanceFunction
Abstract base class for the most common family of distance functions: defined on number vectors and returning double values. |
class |
ArcCosineDistanceFunction
Cosine distance function for feature vectors. |
class |
CosineDistanceFunction
Cosine distance function for feature vectors. |
class |
EuclideanDistanceFunction
Provides the Euclidean distance for FeatureVectors. |
class |
LocallyWeightedDistanceFunction<V extends NumberVector<?,?>>
Provides a locally weighted distance function. |
class |
LPNormDistanceFunction
Provides a LP-Norm for FeatureVectors. |
class |
ManhattanDistanceFunction
Manhattan distance function to compute the Manhattan distance for a pair of FeatureVectors. |
class |
MaximumDistanceFunction
Maximum distance function to compute the Maximum distance for a pair of FeatureVectors. |
class |
MinimumDistanceFunction
Maximum distance function to compute the Minimum distance for a pair of FeatureVectors. |
class |
MinKDistance<O,D extends Distance<D>>
A distance that is at least the distance to the kth nearest neighbor. |
class |
ProxyDistanceFunction<O,D extends Distance<D>>
Distance function to proxy computations to another distance (that probably was run before). |
class |
RandomStableDistanceFunction
This is a dummy distance providing random values (obviously not metrical), useful mostly for unit tests and baseline evaluations: obviously this distance provides no benefit whatsoever. |
class |
SharedNearestNeighborJaccardDistanceFunction<O>
SharedNearestNeighborJaccardDistanceFunction computes the Jaccard coefficient, which is a proper distance metric. |
class |
SquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors. |
class |
WeightedDistanceFunction
Provides the Weighted distance for feature vectors. |
class |
WeightedLPNormDistanceFunction
Weighted version of the Euclidean distance function. |
class |
WeightedSquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractSimilarityAdapter<O>
Adapter from a normalized similarity function to a distance function. |
class |
SimilarityAdapterArccos<O>
Adapter from a normalized similarity function to a distance function using arccos(sim) . |
class |
SimilarityAdapterLinear<O>
Adapter from a normalized similarity function to a distance function using 1 - sim . |
class |
SimilarityAdapterLn<O>
Adapter from a normalized similarity function to a distance function using -log(sim) . |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms. |
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and color similarity. |
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and color similarity. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ERiCDistanceFunction
Provides a distance function for building the hierarchy in the ERiC algorithm. |
class |
PCABasedCorrelationDistanceFunction
Provides the correlation distance for real valued vectors. |
class |
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. |
class |
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. |
class |
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. |
class |
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.external |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.external that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
DiskCacheBasedDoubleDistanceFunction
Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file. |
class |
DiskCacheBasedFloatDistanceFunction
Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file. |
class |
FileBasedDoubleDistanceFunction
Provides a DistanceFunction that is based on double distances given by a distance matrix of an external file. |
class |
FileBasedFloatDistanceFunction
Provides a DistanceFunction that is based on float distances given by a distance matrix of an external file. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.geo that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. |
class |
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. |
class |
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractDimensionsSelectingDoubleDistanceFunction<V extends FeatureVector<?,?>>
Provides a distance function that computes the distance (which is a double distance) between feature vectors only in specified dimensions. |
class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
Abstract super class for all preference vector based correlation distance functions. |
class |
DimensionSelectingDistanceFunction
Provides a distance function that computes the distance between feature vectors as the absolute difference of their values in a specified dimension. |
class |
DimensionsSelectingEuclideanDistanceFunction
Provides a distance function that computes the Euclidean distance between feature vectors only in specified dimensions. |
class |
DiSHDistanceFunction
Distance function used in the DiSH algorithm. |
class |
HiSCDistanceFunction<V extends NumberVector<?,?>>
Distance function used in the HiSC algorithm. |
class |
SubspaceDistanceFunction
Provides a distance function to determine a kind of correlation distance between two points, which is a pair consisting of the distance between the two subspaces spanned by the strong eigenvectors of the two points and the affine distance between the two subspaces. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractEditDistanceFunction
Provides the Edit Distance for FeatureVectors. |
class |
DTWDistanceFunction
Provides the Dynamic Time Warping distance for FeatureVectors. |
class |
EDRDistanceFunction
Provides the Edit Distance on Real Sequence distance for FeatureVectors. |
class |
ERPDistanceFunction
Provides the Edit Distance With Real Penalty distance for FeatureVectors. |
class |
LCSSDistanceFunction
Provides the Longest Common Subsequence distance for FeatureVectors. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.similarityfunction |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.similarityfunction | |
---|---|
interface |
DBIDSimilarityFunction<D extends Distance<D>>
Interface DBIDSimilarityFunction describes the requirements of any similarity function defined over object IDs. |
interface |
IndexBasedSimilarityFunction<O,D extends Distance<D>>
Interface for preprocessor/index based similarity functions. |
interface |
NormalizedPrimitiveSimilarityFunction<O,D extends Distance<D>>
Marker interface for similarity functions working on primitive objects, and limited to the 0-1 value range. |
interface |
NormalizedSimilarityFunction<O,D extends Distance<?>>
Marker interface to signal that the similarity function is normalized to produce values in the range of [0:1]. |
interface |
PrimitiveSimilarityFunction<O,D extends Distance<D>>
Interface SimilarityFunction describes the requirements of any similarity function. |
interface |
SimilarityFunction<O,D extends Distance<?>>
Interface SimilarityFunction describes the requirements of any similarity function. |
Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractDBIDSimilarityFunction<D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor. |
class |
AbstractIndexBasedSimilarityFunction<O,I extends Index,R,D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor. |
class |
AbstractPrimitiveSimilarityFunction<O,D extends Distance<D>>
Base implementation of a similarity function. |
class |
FractionalSharedNearestNeighborSimilarityFunction<O>
SharedNearestNeighborSimilarityFunction with a pattern defined to accept Strings that define a non-negative Integer. |
class |
SharedNearestNeighborSimilarityFunction<O>
SharedNearestNeighborSimilarityFunction with a pattern defined to accept Strings that define a non-negative Integer. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
---|
Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
FooKernelFunction
Provides an experimental KernelDistanceFunction for NumberVectors. |
class |
LinearKernelFunction<O extends NumberVector<?,?>>
Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by V1^T*V2. |
class |
PolynomialKernelFunction
Provides a polynomial Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by (V1^T*V2)^degree. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index | |
---|---|
interface |
IndexFactory<V,I extends Index>
Factory interface for indexes. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed | |
---|---|
static interface |
LocalProjectionIndex.Factory<V extends NumberVector<?,?>,I extends LocalProjectionIndex<V,?>>
Factory |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.knn |
---|
Classes in de.lmu.ifi.dbs.elki.index.preprocessed.knn that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
AbstractMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. |
static class |
MaterializeKNNAndRKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. |
static class |
MaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. |
static class |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory<O extends NumberVector<? super O,?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry<D>>
The parameterizable factory. |
static class |
PartitionApproximationMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. |
static class |
SpatialApproximationMaterializeKNNPreprocessor.Factory<D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
The actual preprocessor instance. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.localpca | |
---|---|
static interface |
FilteredLocalPCAIndex.Factory<NV extends NumberVector<?,?>,I extends FilteredLocalPCAIndex<NV>>
Factory interface |
Classes in de.lmu.ifi.dbs.elki.index.preprocessed.localpca that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
AbstractFilteredPCAIndex.Factory<NV extends NumberVector<NV,?>,I extends AbstractFilteredPCAIndex<NV>>
Factory class |
static class |
KNNQueryFilteredPCAIndex.Factory<V extends NumberVector<V,?>>
Factory class |
static class |
RangeQueryFilteredPCAIndex.Factory<V extends NumberVector<V,?>>
Factory class |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.preference |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.preference | |
---|---|
static interface |
PreferenceVectorIndex.Factory<V extends NumberVector<?,?>,I extends PreferenceVectorIndex<V>>
Factory interface |
Classes in de.lmu.ifi.dbs.elki.index.preprocessed.preference that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
AbstractPreferenceVectorIndex.Factory<V extends NumberVector<?,?>,I extends PreferenceVectorIndex<V>>
Factory class |
static class |
DiSHPreferenceVectorIndex.Factory<V extends NumberVector<?,?>>
Factory class |
static class |
HiSCPreferenceVectorIndex.Factory<V extends NumberVector<?,?>>
Factory class |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.snn |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.snn | |
---|---|
static interface |
SharedNearestNeighborIndex.Factory<O,I extends SharedNearestNeighborIndex<O>>
Factory interface |
Classes in de.lmu.ifi.dbs.elki.index.preprocessed.snn that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
SharedNearestNeighborPreprocessor.Factory<O,D extends Distance<D>>
Factory class |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | |
---|---|
static interface |
SubspaceProjectionIndex.Factory<NV extends NumberVector<?,?>,I extends SubspaceProjectionIndex<NV,?>>
Factory interface |
Classes in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
AbstractSubspaceProjectionIndex.Factory<NV extends NumberVector<?,?>,D extends Distance<D>,I extends AbstractSubspaceProjectionIndex<NV,D,?>>
Factory class |
static class |
FourCSubspaceIndex.Factory<V extends NumberVector<V,?>,D extends Distance<D>>
Factory class for 4C preprocessors. |
static class |
PreDeConSubspaceIndex.Factory<V extends NumberVector<? extends V,?>,D extends Distance<D>>
Factory |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
TreeIndexFactory<O,I extends Index>
Abstract base class for tree-based indexes. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractMTreeFactory<O,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>,I extends AbstractMTree<O,D,N,E> & Index>
Abstract factory for various MTrees |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractMkTreeUnifiedFactory<O,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>,I extends AbstractMkTree<O,D,N,E> & Index>
Abstract factory for various Mk-Trees |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
MkAppTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkApp-Tree |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
MkCopTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkCoPTree-Tree |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
MkMaxTreeFactory<O,D extends Distance<D>>
Factory for MkMaxTrees |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
MkTabTreeFactory<O,D extends Distance<D>>
Factory for MkTabTrees |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
MTreeFactory<O,D extends Distance<D>>
Factory for a M-Tree |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractRStarTreeFactory<O extends NumberVector<O,?>,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,I extends AbstractRStarTree<N,E> & Index>
Abstract factory for R*-Tree based trees. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.bulk that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractBulkSplit
Encapsulates the required parameters for a bulk split of a spatial index. |
class |
MaxExtensionBulkSplit
Split strategy for bulk-loading a spatial tree where the split axes are the dimensions with maximum extension. |
class |
ZCurveBulkSplit
Bulk split that orders object by their Z curve position, then splits them into pages accordingly. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
DeLiCluTreeFactory<O extends NumberVector<O,?>>
Factory for DeLiClu R*-Trees. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
RStarTreeFactory<O extends NumberVector<O,?>>
Factory for regular R*-Trees. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util | |
---|---|
interface |
InsertionStrategy
Interface for implementing insertion strategies, i.e. in which path of the tree to insert the new element. |
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ApproximateLeastOverlapInsertionStrategy
Insertion strategy that exhaustively tests all childs for the least overlap when inserting. |
class |
LeastOverlapInsertionStrategy
Insertion strategy that exhaustively tests all childs for the least overlap when inserting. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca | |
---|---|
interface |
EigenPairFilter
The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors and their corresponding eigenvalues) which are a result of a Variance Analysis Algorithm, e.g. |
Classes in de.lmu.ifi.dbs.elki.math.linearalgebra.pca that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
Abstract class with the task of computing a Covariance matrix to be used in PCA. |
class |
CompositeEigenPairFilter
The CompositeEigenPairFilter can be used to build a chain of
eigenpair filters. |
class |
FirstNEigenPairFilter
The FirstNEigenPairFilter marks the n highest eigenpairs as strong eigenpairs, where n is a user specified number. |
class |
LimitEigenPairFilter
The LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue below the specified threshold (relative or absolute) as weak eigenpairs, the others are marked as strong eigenpairs. |
class |
NormalizingEigenPairFilter
The NormalizingEigenPairFilter normalizes all eigenvectors s.t. |
class |
PCAFilteredRunner<V extends NumberVector<? extends V,?>>
PCA runner that will do dimensionality reduction. |
class |
PCARunner<V extends NumberVector<? extends V,?>>
Class to run PCA on given data. |
class |
PercentageEigenPairFilter
The PercentageEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is higher than the given percentage of the sum of all eigenvalues as strong eigenpairs. |
class |
ProgressiveEigenPairFilter
The ProgressiveEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is higher than the given percentage of the sum of all eigenvalues as strong eigenpairs. |
class |
RelativeEigenPairFilter
The RelativeEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and marks the first eigenpairs who are a certain factor above the average of the remaining eigenvalues. |
class |
SignificantEigenPairFilter
The SignificantEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and chooses the contrast of an Eigenvalue to the remaining Eigenvalues is maximal. |
class |
StandardCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
Class for building a "traditional" covariance matrix. |
class |
WeakEigenPairFilter
The WeakEigenPairFilter sorts the eigenpairs in descending order of their eigenvalues and returns the first eigenpairs who are above the average mark as "strong", the others as "weak". |
class |
WeightedCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
CovarianceMatrixBuilder with weights. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions | |
---|---|
interface |
WeightFunction
WeightFunction interface that allows the use of various distance-based weight functions. |
Classes in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ConstantWeight
Constant Weight function The result is always 1.0 |
class |
ErfcStddevWeight
Gaussian Error Function Weight function, scaled using stddev. |
class |
ErfcWeight
Gaussian Error Function Weight function, scaled such that the result it 0.1 at distance == max erfc(1.1630871536766736 * distance / max) The value of 1.1630871536766736 is erfcinv(0.1), to achieve the intended scaling. |
class |
ExponentialStddevWeight
Exponential Weight function, scaled such that the result it 0.1 at distance == max stddev * exp(-.5 * distance/stddev) This is similar to the Gaussian weight function, except distance/stddev is not squared. |
class |
ExponentialWeight
Exponential Weight function, scaled such that the result it 0.1 at distance == max exp(-2.3025850929940455 * distance/max) This is similar to the Gaussian weight function, except distance/max is not squared |
class |
GaussStddevWeight
Gaussian Weight function, scaled such using standard deviation factor * exp(-.5 * (distance/stddev)^2) with factor being 1 / sqrt(2 * PI) |
class |
GaussWeight
Gaussian Weight function, scaled such that the result it 0.1 at distance == max exp(-2.3025850929940455 * (distance/max)^2) |
class |
InverseLinearWeight
Inverse Linear Weight Function. |
class |
InverseProportionalStddevWeight
Inverse proportional weight function, scaled using the standard deviation. 1 / (1 + distance/stddev) |
class |
InverseProportionalWeight
Inverse proportional weight function, scaled using the maximum. 1 / (1 + distance/max) |
class |
LinearWeight
Linear weight function, scaled using the maximum such that it goes from 1.0 to 0.1 1 - 0.9 * (distance/max) |
class |
QuadraticStddevWeight
Quadratic weight function, scaled using the standard deviation. |
class |
QuadraticWeight
Quadratic weight function, scaled using the maximum to reach 0.1 at that point. 1.0 - 0.9 * (distance/max)^2 |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.result |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.result | |
---|---|
interface |
ResultHandler
Interface for any class that can handle results |
Classes in de.lmu.ifi.dbs.elki.result that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
DiscardResultHandler
A dummy result handler that discards the actual result, for use in benchmarks. |
class |
KMLOutputHandler
Class to handle KML output. |
class |
ResultWriter
Result handler that feeds the data into a TextWriter |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.optionhandling |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.optionhandling | |
---|---|
interface |
Parameterizable
Interface to define the required methods for command line interaction. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.referencepoints |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.referencepoints | |
---|---|
interface |
ReferencePointsHeuristic<O>
Simple Interface for an heuristic to pick reference points. |
Classes in de.lmu.ifi.dbs.elki.utilities.referencepoints that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AxisBasedReferencePoints<V extends NumberVector<V,?>>
Strategy to pick reference points by placing them on the axis ends. |
class |
FullDatabaseReferencePoints<O extends NumberVector<? extends O,?>>
Strategy to use the complete database as reference points. |
class |
GridBasedReferencePoints<V extends NumberVector<V,?>>
Grid-based strategy to pick reference points. |
class |
RandomGeneratedReferencePoints<V extends NumberVector<V,?>>
Reference points generated randomly within the used data space. |
class |
RandomSampleReferencePoints<V extends NumberVector<? extends V,?>>
Random-Sampling strategy for picking reference points. |
class |
StarBasedReferencePoints<V extends NumberVector<V,?>>
Star-based strategy to pick reference points. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling | |
---|---|
interface |
ScalingFunction
Interface for scaling functions used e.g. by outlier evaluation such as Histograms and visualization. |
interface |
StaticScalingFunction
Interface for Scaling functions that do NOT depend on analyzing the data set. |
Classes in de.lmu.ifi.dbs.elki.utilities.scaling that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ClipScaling
Scale implementing a simple clipping. |
class |
GammaScaling
Non-linear scaling function using a Gamma curve. |
class |
IdentityScaling
The trivial "identity" scaling function. |
class |
LinearScaling
Simple linear scaling function. |
class |
MinusLogScaling
Scaling function to invert values by computing -1 * Math.log(x) |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.utilities.scaling.outlier | |
---|---|
interface |
OutlierScalingFunction
Interface for scaling functions used by Outlier evaluation such as Histograms and visualization. |
Classes in de.lmu.ifi.dbs.elki.utilities.scaling.outlier that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
HeDESNormalizationOutlierScaling
Normalization used by HeDES |
class |
MinusLogGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF. |
class |
MinusLogStandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]. |
class |
MixtureModelOutlierScalingFunction
Tries to fit a mixture model (exponential for inliers and gaussian for outliers) to the outlier score distribution. |
class |
MultiplicativeInverseScaling
Scaling function to invert values basically by computing 1/x, but in a variation that maps the values to the [0:1] interval and avoiding division by 0. |
class |
OutlierGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1] by assuming a Gamma distribution on the values. |
class |
OutlierLinearScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]. |
class |
OutlierMinusLogScaling
Scaling function to invert values by computing -1 * Math.log(x) Useful for example for scaling ABOD , but see
MinusLogStandardDeviationScaling and MinusLogGammaScaling for
more advanced scalings for this algorithm. |
class |
OutlierSqrtScaling
Scaling that can map arbitrary positive values to a value in the range of [0:1]. |
class |
RankingPseudoOutlierScaling
This is a pseudo outlier scoring obtained by only considering the ranks of the objects. |
class |
SigmoidOutlierScalingFunction
Tries to fit a sigmoid to the outlier scores and use it to convert the values to probability estimates in the range of 0.0 to 1.0 |
class |
SqrtStandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]. |
class |
StandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]. |
class |
TopKOutlierScaling
Outlier scaling function that only keeps the top k outliers. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization |
---|
Classes in de.lmu.ifi.dbs.elki.visualization that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
VisualizerParameterizer
Utility class to determine the visualizers for a result class. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.gui |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.gui that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ResultVisualizer
Handler to process and visualize a Result. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.projector |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.projector | |
---|---|
interface |
ProjectorFactory
A projector is responsible for adding projections to the visualization by detecting appropriate relations in the database. |
Classes in de.lmu.ifi.dbs.elki.visualization.projector that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
HistogramFactory
Produce one-dimensional projections. |
class |
OPTICSProjectorFactory
Produce OPTICS plot projections |
class |
ScatterPlotFactory
Produce scatterplot projections. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers | |
---|---|
interface |
VisFactory
Defines the requirements for a visualizer. |
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AbstractVisFactory
Abstract superclass for Visualizers (aka: Visualization Factories). |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.optics that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
OPTICSClusterVisualization.Factory
Factory class for OPTICS plot selections. |
static class |
OPTICSPlotCutVisualization.Factory
Factory class |
static class |
OPTICSPlotSelectionVisualization.Factory
Factory class for OPTICS plot selections. |
static class |
OPTICSPlotVisualizer.Factory
Factory class for OPTICS plot. |
static class |
OPTICSSteepAreaVisualization.Factory
Factory class for OPTICS plot selections. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
P1DHistogramVisualizer.Factory<NV extends NumberVector<NV,?>>
Visualizer factory for 1D histograms |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d that implement InspectionUtilFrequentlyScanned | |
---|---|
static class |
AxisVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for axis visualizations |
static class |
BubbleVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for producing bubble visualizations |
static class |
ClusterConvexHullVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing the convex hull of a cluster. |
static class |
ClusteringVisualization.Factory<NV extends NumberVector<NV,?>>
Visualization factory |
static class |
ClusterMeanVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing a marker for the mean in a KMeans-Clustering |
static class |
ClusterOrderVisualization.Factory<NV extends NumberVector<NV,?>>
Visualize an OPTICS cluster order by drawing connection lines. |
static class |
DotVisualization.Factory<NV extends NumberVector<NV,?>>
The visualization factory |
static class |
EMClusterVisualization.Factory<NV extends NumberVector<NV,?>>
Visualizer for generating SVG-Elements containing ellipses for first, second and third standard deviation |
static class |
MoveObjectsToolVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tool visualizations for changing objects in the database |
static class |
PolygonVisualization.Factory
The visualization factory |
static class |
ReferencePointsVisualization.Factory<NV extends NumberVector<NV,?>>
Generates a SVG-Element visualizing reference points. |
static class |
SelectionConvexHullVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing the convex hull of the selected points |
static class |
SelectionCubeVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing a cube as marker representing the selected range for each dimension |
static class |
SelectionDotVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers to generate an SVG-Element containing dots as markers representing the selected Database's objects. |
static class |
SelectionToolCubeVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tool visualizations for selecting ranges and the inclosed objects |
static class |
SelectionToolDotVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tool visualizations for selecting objects |
static class |
ToolBox2DVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for visualizers for a toolbox |
static class |
TooltipScoreVisualization.Factory<NV extends NumberVector<NV,?>>
Factory for tooltip visualizers |
static class |
TooltipStringVisualization.Factory<NV extends NumberVector<NV,?>>
Factory |
static class |
TreeMBRVisualization.Factory<NV extends NumberVector<NV,?>>
Factory |
static class |
TreeSphereVisualization.Factory<NV extends NumberVector<NV,?>>
Factory |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
ClusterEvaluationVisFactory
Pseudo-Visualizer, that lists the cluster evaluation results found. |
class |
CurveVisFactory
Visualizer to render a simple 2D curve such as a ROC curve. |
class |
HistogramVisFactory
Visualizer to draw histograms. |
class |
KeyVisFactory
Pseudo-Visualizer, that gives the key for a clustering. |
class |
LabelVisFactory
Trivial "visualizer" that displays a static label. |
static class |
PixmapVisualizer.Factory
Factory class for pixmap visualizers. |
class |
SettingsVisFactory
Pseudo-Visualizer, that lists the settings of the algorithm- |
static class |
SimilarityMatrixVisualizer.Factory
Factory class for pixmap visualizers. |
Uses of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.workflow |
---|
Subinterfaces of InspectionUtilFrequentlyScanned in de.lmu.ifi.dbs.elki.workflow | |
---|---|
interface |
WorkflowStep
Trivial interface for workflow steps. |
Classes in de.lmu.ifi.dbs.elki.workflow that implement InspectionUtilFrequentlyScanned | |
---|---|
class |
AlgorithmStep
The "algorithms" step, where data is analyzed. |
class |
EvaluationStep
The "evaluation" step, where data is analyzed. |
class |
InputStep
Data input step of the workflow. |
class |
LoggingStep
Pseudo-step to configure logging / verbose mode. |
class |
OutputStep
The "output" step, where data is analyzed. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |