|
|
|||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||
See:
Description

| Interface Summary | |
|---|---|
| OutlierAlgorithm | Generic super interface for outlier detection algorithms. |
| Class Summary | |
|---|---|
| ABOD<V extends NumberVector<V,?>> | Angle-Based Outlier Detection Outlier detection using variance analysis on angles, especially for high dimensional data sets. |
| ABOD.Parameterizer<V extends NumberVector<V,?>> | Parameterization class. |
| AbstractAggarwalYuOutlier<V extends NumberVector<?,?>> | Abstract base class for the sparse-grid-cell based outlier detection of Aggarwal and Yu. |
| AbstractAggarwalYuOutlier.Parameterizer | Parameterization class. |
| AbstractDBOutlier<O,D extends Distance<D>> | Simple distance based outlier detection algorithms. |
| AbstractDBOutlier.Parameterizer<O,D extends Distance<D>> | Parameterization class. |
| AggarwalYuEvolutionary<V extends NumberVector<?,?>> | EAFOD provides the evolutionary outlier detection algorithm, an algorithm to detect outliers for high dimensional data. |
| AggarwalYuEvolutionary.Individuum | Individuum for the evolutionary search. |
| AggarwalYuEvolutionary.Parameterizer<V extends NumberVector<?,?>> | Parameterization class. |
| AggarwalYuNaive<V extends NumberVector<?,?>> | BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers. |
| AggarwalYuNaive.Parameterizer<V extends NumberVector<?,?>> | Parameterization class. |
| DBOutlierDetection<O,D extends Distance<D>> | Simple distanced based outlier detection algorithm. |
| DBOutlierDetection.Parameterizer<O,D extends Distance<D>> | Parameterization class. |
| DBOutlierScore<O,D extends Distance<D>> | Compute percentage of neighbors in the given neighborhood with size d. |
| DBOutlierScore.Parameterizer<O,D extends Distance<D>> | Parameterization class. |
| EMOutlier<V extends NumberVector<V,?>> | outlier detection algorithm using EM Clustering. |
| EMOutlier.Parameterizer<V extends NumberVector<V,?>> | Parameterization class. |
| GaussianModel<V extends NumberVector<V,?>> | Outlier have smallest GMOD_PROB: the outlier scores is the probability density of the assumed distribution. |
| GaussianModel.Parameterizer<V extends NumberVector<V,?>> | Parameterization class. |
| GaussianUniformMixture<V extends NumberVector<V,?>> | Outlier detection algorithm using a mixture model approach. |
| GaussianUniformMixture.Parameterizer<V extends NumberVector<V,?>> | Parameterization class. |
| INFLO<O,D extends NumberDistance<D,?>> | INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
Outliers using Symmetric Relationship
Reference: Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
| INFLO.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| KNNOutlier<O,D extends NumberDistance<D,?>> | Outlier Detection based on the distance of an object to its k nearest neighbor. |
| KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| KNNWeightOutlier<O,D extends NumberDistance<D,?>> | Outlier Detection based on the accumulated distances of a point to its k nearest neighbors. |
| KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| LDOF<O,D extends NumberDistance<D,?>> | Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database. |
| LDOF.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| LOCI<O,D extends NumberDistance<D,?>> | Fast Outlier Detection Using the "Local Correlation Integral". |
| LOCI.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| LOF<O,D extends NumberDistance<D,?>> |
Algorithm to compute density-based local outlier factors in a database based
on a specified parameter LOF.K_ID (-lof.k). |
| LOF.LOFResult<O,D extends NumberDistance<D,?>> | Encapsulates information like the neighborhood, the LRD and LOF values of
the objects during a run of the LOF algorithm. |
| LOF.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| LoOP<O,D extends NumberDistance<D,?>> | LoOP: Local Outlier Probabilities Distance/density based algorithm similar to LOF to detect outliers, but with statistical methods to achieve better result stability. |
| LoOP.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| OnlineLOF<O,D extends NumberDistance<D,?>> | Incremental version of the LOF Algorithm, supports insertions and
removals. |
| OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| OPTICSOF<O,D extends NumberDistance<D,?>> | OPTICSOF provides the Optics-of algorithm, an algorithm to find Local Outliers in a database. |
| OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>> | Parameterization class. |
| ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>> | provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points. |
| ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>> | Parameterization class. |
| SOD<V extends NumberVector<V,?>> | |
| SOD.Parameterizer<V extends NumberVector<V,?>> | Parameterization class. |
| SOD.SODModel<O extends NumberVector<O,?>> | |
| SOD.SODProxyScoreResult | Proxy class that converts a model result to an actual SOD score result. |
Outlier detection algorithms
de.lmu.ifi.dbs.elki.algorithm
|
|
|||||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||||