|
||||||||||
PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES |
See:
Description
Interface Summary | |
---|---|
OutlierScalingFunction | Interface for scaling functions used by Outlier evaluation such as Histograms and visualization. |
Class Summary | |
---|---|
HeDESNormalizationOutlierScaling | Normalization used by HeDES |
MinusLogGammaScaling | Scaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF. |
MinusLogGammaScaling.Parameterizer | Parameterization class. |
MinusLogStandardDeviationScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]. |
MinusLogStandardDeviationScaling.Parameterizer | Parameterization class. |
MixtureModelOutlierScalingFunction | Tries to fit a mixture model (exponential for inliers and gaussian for outliers) to the outlier score distribution. |
MultiplicativeInverseScaling | Scaling function to invert values basically by computing 1/x, but in a variation that maps the values to the [0:1] interval and avoiding division by 0. |
OutlierGammaScaling | Scaling that can map arbitrary values to a probability in the range of [0:1] by assuming a Gamma distribution on the values. |
OutlierGammaScaling.Parameterizer | Parameterization class. |
OutlierLinearScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]. |
OutlierLinearScaling.Parameterizer | Parameterization class. |
OutlierMinusLogScaling | Scaling function to invert values by computing -1 * Math.log(x)
Useful for example for scaling
ABOD , but see
MinusLogStandardDeviationScaling and MinusLogGammaScaling for
more advanced scalings for this algorithm. |
OutlierSqrtScaling | Scaling that can map arbitrary positive values to a value in the range of [0:1]. |
OutlierSqrtScaling.Parameterizer | Parameterization class. |
RankingPseudoOutlierScaling | This is a pseudo outlier scoring obtained by only considering the ranks of the objects. |
SigmoidOutlierScalingFunction | Tries to fit a sigmoid to the outlier scores and use it to convert the values to probability estimates in the range of 0.0 to 1.0 |
SqrtStandardDeviationScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]. |
SqrtStandardDeviationScaling.Parameterizer | Parameterization class. |
StandardDeviationScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]. |
StandardDeviationScaling.Parameterizer | Parameterization class. |
TopKOutlierScaling | Outlier scaling function that only keeps the top k outliers. |
TopKOutlierScaling.Parameterizer | Parameterization class. |
Scaling of Outlier scores, that require a statistical analysis of the occurring values
|
|
|||||||||||
PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES |