|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R>
de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm<N,D,OutlierResult>
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC<N,D>
N - Spatial Vector typeD - Distance to use@Title(value="Random Walk on Exhaustive Combination")
@Description(value="Spatial Outlier Detection using Random Walk on Exhaustive Combination")
@Reference(authors="X. Liu and C.-T. Lu and F. Chen",
title="Spatial outlier detection: random walk based approaches",
booktitle="Proc. 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2010",
url="http://dx.doi.org/10.1145/1869790.1869841")
public class CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks. Note: this method can only handle one-dimensional data, but could probably be easily extended to higher dimensional data by using an distance function instead of the absolute difference.
X. Liu and C.-T. Lu and F. Chen:
Spatial outlier detection: random walk based approaches,
in Proc. 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2010
| Nested Class Summary | |
|---|---|
static class |
CTLuRandomWalkEC.Parameterizer<N,D extends NumberDistance<D,?>>
Parameterization class. |
| Field Summary | |
|---|---|
private double |
alpha
Parameter alpha: Attribute difference exponent |
private double |
c
Parameter c: damping factor |
private int |
k
Parameter k |
private static Logging |
logger
Logger |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
|---|
DISTANCE_FUNCTION_ID |
| Constructor Summary | |
|---|---|
CTLuRandomWalkEC(DistanceFunction<N,D> distanceFunction,
double alpha,
double c,
int k)
Constructor |
|
| Method Summary | |
|---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
OutlierResult |
run(Relation<N> spatial,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
|---|
getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
makeParameterDistanceFunction, run |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm |
|---|
run |
| Field Detail |
|---|
private static final Logging logger
private double alpha
private double c
private int k
| Constructor Detail |
|---|
public CTLuRandomWalkEC(DistanceFunction<N,D> distanceFunction,
double alpha,
double c,
int k)
distanceFunction - Distance functionalpha - Alpha parameterc - C parameterk - Number of neighbors| Method Detail |
|---|
public OutlierResult run(Relation<N> spatial,
Relation<? extends NumberVector<?,?>> relation)
spatial - Spatial neighborhood relationrelation - Attribute value relation
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<OutlierResult>protected Logging getLogger()
AbstractAlgorithm
getLogger in class AbstractAlgorithm<OutlierResult>
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||