de.lmu.ifi.dbs.elki.utilities.scaling.outlier
Class MinusLogGammaScaling
java.lang.Object
de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling
de.lmu.ifi.dbs.elki.utilities.scaling.outlier.MinusLogGammaScaling
- All Implemented Interfaces:
- InspectionUtilFrequentlyScanned, Parameterizable, OutlierScalingFunction, ScalingFunction
@Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek",
title="Interpreting and Unifying Outlier Scores",
booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011",
url="http://www.dbs.ifi.lmu.de/~zimek/publications/SDM2011/SDM11-outlier-preprint.pdf")
public class MinusLogGammaScaling
- extends OutlierGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1],
by assuming a Gamma distribution on the data and evaluating the Gamma CDF.
Field Summary |
(package private) double |
max
Maximum value seen |
(package private) double |
mlogmax
Minimum value (after log step, so maximum again) |
Method Summary |
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called. |
protected double |
preScale(double score)
Normalize data if necessary. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
max
double max
- Maximum value seen
mlogmax
double mlogmax
- Minimum value (after log step, so maximum again)
MinusLogGammaScaling
public MinusLogGammaScaling()
- Constructor.
preScale
protected double preScale(double score)
- Description copied from class:
OutlierGammaScaling
- Normalize data if necessary.
Note: this is overridden by
MinusLogGammaScaling
!
- Overrides:
preScale
in class OutlierGammaScaling
- Parameters:
score
- Original score
- Returns:
- Normalized score.
prepare
public void prepare(OutlierResult or)
- Description copied from interface:
OutlierScalingFunction
- Prepare is called once for each data set, before getScaled() will be
called. This function can be used to extract global parameters such as
means, minimums or maximums from the Database, Result or Annotation.
- Specified by:
prepare
in interface OutlierScalingFunction
- Overrides:
prepare
in class OutlierGammaScaling
- Parameters:
or
- Outlier result to use