|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<OutlierResult> de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier<N> de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.TrimmedMeanApproach<N>
N
- Neighborhood object type@Title(value="A Trimmed Mean Approach to Finding Spatial Outliers") @Description(value="A local trimmed mean approach to evaluating the spatial outlier factor which is the degree that a site is outlying compared to its neighbors") @Reference(authors="Tianming Hu and Sam Yuan Sung", title="A trimmed mean approach to finding spatial outliers", booktitle="Intelligent Data Analysis, Volume 8, 2004", url="http://iospress.metapress.com/content/PLVLT6431DVNJXNK") public class TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers. Outliers are defined by their value deviation from a trimmed mean of the neighbors.
Reference:
Tianming Hu and Sam Yuan Sung
A Trimmed Mean Approach to finding Spatial Outliers
in Intelligent Data Analysis, Volume 8, 2004.
the contiguity Matrix is definit as
wij = 1/k if j is neighbor of i, k is the neighbors size of i.
Nested Class Summary | |
---|---|
static class |
TrimmedMeanApproach.Parameterizer<N>
Parameterizer |
Field Summary | |
---|---|
private static Logging |
logger
The logger for this class. |
private double |
p
the parameter p |
Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier |
---|
NEIGHBORHOOD_ID |
Constructor Summary | |
---|---|
protected |
TrimmedMeanApproach(NeighborSetPredicate.Factory<N> npredf,
double p)
Constructor |
Method Summary | |
---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
OutlierResult |
run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier |
---|
getNeighborSetPredicateFactory |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm |
---|
run |
Field Detail |
---|
private static final Logging logger
private double p
Constructor Detail |
---|
protected TrimmedMeanApproach(NeighborSetPredicate.Factory<N> npredf, double p)
p
- Parameter pnpredf
- Neighborhood factory.Method Detail |
---|
public OutlierResult run(Database database, Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
database
- Databasenrel
- Neighborhood relationrelation
- Data Relation (1 dimensional!)
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<OutlierResult>
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<OutlierResult>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |