|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<OutlierResult>
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier<N>
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.TrimmedMeanApproach<N>
N - Neighborhood object type@Title(value="A Trimmed Mean Approach to Finding Spatial Outliers")
@Description(value="A local trimmed mean approach to evaluating the spatial outlier factor which is the degree that a site is outlying compared to its neighbors")
@Reference(authors="Tianming Hu and Sam Yuan Sung",
title="A trimmed mean approach to finding spatial outliers",
booktitle="Intelligent Data Analysis, Volume 8, 2004",
url="http://iospress.metapress.com/content/PLVLT6431DVNJXNK")
public class TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers. Outliers are defined by their value deviation from a trimmed mean of the neighbors.
Reference:
Tianming Hu and Sam Yuan Sung
A Trimmed Mean Approach to finding Spatial Outliers
in Intelligent Data Analysis, Volume 8, 2004.
the contiguity Matrix is definit as
wij = 1/k if j is neighbor of i, k is the neighbors size of i.
| Nested Class Summary | |
|---|---|
static class |
TrimmedMeanApproach.Parameterizer<N>
Parameterizer |
| Field Summary | |
|---|---|
private static Logging |
logger
The logger for this class. |
private double |
p
the parameter p |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier |
|---|
NEIGHBORHOOD_ID |
| Constructor Summary | |
|---|---|
protected |
TrimmedMeanApproach(NeighborSetPredicate.Factory<N> npredf,
double p)
Constructor |
| Method Summary | |
|---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
OutlierResult |
run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.AbstractNeighborhoodOutlier |
|---|
getNeighborSetPredicateFactory |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
makeParameterDistanceFunction, run |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm |
|---|
run |
| Field Detail |
|---|
private static final Logging logger
private double p
| Constructor Detail |
|---|
protected TrimmedMeanApproach(NeighborSetPredicate.Factory<N> npredf,
double p)
p - Parameter pnpredf - Neighborhood factory.| Method Detail |
|---|
public OutlierResult run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
database - Databasenrel - Neighborhood relationrelation - Data Relation (1 dimensional!)
protected Logging getLogger()
AbstractAlgorithm
getLogger in class AbstractAlgorithm<OutlierResult>public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<OutlierResult>
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||