de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
Class PreDeCon<V extends NumberVector<V,?>>
java.lang.Object
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R>
de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedDBSCAN<Clustering<Model>,V>
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PreDeCon<V>
- Type Parameters:
V
- the type of NumberVector handled by this Algorithm
- All Implemented Interfaces:
- Algorithm, ClusteringAlgorithm<Clustering<Model>>, InspectionUtilFrequentlyScanned, Parameterizable
@Title(value="PreDeCon: Subspace Preference weighted Density Connected Clustering")
@Description(value="PreDeCon computes clusters of subspace preference weighted connected points. The algorithm searches for local subgroups of a set of feature vectors having a low variance along one or more (but not all) attributes.")
@Reference(authors="C. B\u00f6hm, K. Kailing, H.-P. Kriegel, P. Kr\u00f6ger",
title="Density Connected Clustering with Local Subspace Preferences",
booktitle="Proc. 4th IEEE Int. Conf. on Data Mining (ICDM\'04), Brighton, UK, 2004",
url="http://dx.doi.org/10.1109/ICDM.2004.10087")
public class PreDeCon<V extends NumberVector<V,?>>
- extends AbstractProjectedDBSCAN<Clustering<Model>,V>
PreDeCon computes clusters of subspace preference weighted connected points.
The algorithm searches for local subgroups of a set of feature vectors having
a low variance along one or more (but not all) attributes.
Reference:
C. Böhm, K. Kailing, H.-P. Kriegel, P. Kröger: Density Connected Clustering
with Local Subspace Preferences.
In Proc. 4th IEEE Int. Conf. on Data Mining (ICDM'04), Brighton, UK, 2004.
Field Summary |
private static Logging |
logger
The logger for this class. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
logger
private static final Logging logger
- The logger for this class.
PreDeCon
public PreDeCon(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
- Constructor.
- Parameters:
epsilon
- Epsilon valueminpts
- MinPts valuedistanceFunction
- outer distance functionlambda
- Lambda value
getLongResultName
public String getLongResultName()
- Description copied from class:
AbstractProjectedDBSCAN
- Return the long result name.
- Specified by:
getLongResultName
in class AbstractProjectedDBSCAN<Clustering<Model>,V extends NumberVector<V,?>>
- Returns:
- Long name for result
getShortResultName
public String getShortResultName()
- Description copied from class:
AbstractProjectedDBSCAN
- Return the short result name.
- Specified by:
getShortResultName
in class AbstractProjectedDBSCAN<Clustering<Model>,V extends NumberVector<V,?>>
- Returns:
- Short name for result
getLogger
protected Logging getLogger()
- Description copied from class:
AbstractAlgorithm
- Get the (STATIC) logger for this class.
- Specified by:
getLogger
in class AbstractAlgorithm<Clustering<Model>>
- Returns:
- the static logger