|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<Clustering<SubspaceModel<V>>> de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH<V>
V
- the type of NumberVector handled by this Algorithm@Title(value="DiSH: Detecting Subspace cluster Hierarchies") @Description(value="Algorithm to find hierarchical correlation clusters in subspaces.") @Reference(authors="E. Achtert, C. B\u00f6hm, H.-P. Kriegel, P. Kr\u00f6ger, I. M\u00fcller-Gorman, A. Zimek", title="Detection and Visualization of Subspace Cluster Hierarchies", booktitle="Proc. 12th International Conference on Database Systems for Advanced Applications (DASFAA), Bangkok, Thailand, 2007", url="http://dx.doi.org/10.1007/978-3-540-71703-4_15") public class DiSH<V extends NumberVector<V,?>>
Algorithm for detecting subspace hierarchies.
Reference:
E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, A. Zimek:
Detection and Visualization of Subspace Cluster Hierarchies.
In Proc. 12th International Conference on Database Systems for Advanced
Applications (DASFAA), Bangkok, Thailand, 2007.
Nested Class Summary | |
---|---|
static class |
DiSH.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
Field Summary | |
---|---|
private DiSHDistanceFunction |
dishDistance
The distance function we use |
private double |
epsilon
Holds the value of EPSILON_ID . |
static OptionID |
EPSILON_ID
Parameter that specifies the maximum radius of the neighborhood to be considered in each dimension for determination of the preference vector, must be a double equal to or greater than 0. |
private static Logging |
logger
The logger for this class. |
static OptionID |
MU_ID
Parameter that specifies the a minimum number of points as a smoothing factor to avoid the single-link-effect, must be an integer greater than 0. |
private Collection<Pair<OptionID,Object>> |
opticsAlgorithmParameters
Parameters that were given to OPTICS |
Constructor Summary | |
---|---|
DiSH(double epsilon,
DiSHDistanceFunction dishDistance,
Collection<Pair<OptionID,Object>> opticsAlgorithmParameters)
Constructor. |
Method Summary | |
---|---|
private void |
buildHierarchy(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
List<Cluster<SubspaceModel<V>>> clusters,
int dimensionality)
Builds the cluster hierarchy. |
private void |
checkClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap,
int minpts)
Removes the clusters with size < minpts from the cluster map and adds them to their parents. |
private Clustering<SubspaceModel<V>> |
computeClusters(Relation<V> database,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder,
DiSHDistanceFunction.Instance<V> distFunc)
Computes the hierarchical clusters according to the cluster order. |
private Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> |
extractClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder)
Extracts the clusters from the cluster order. |
private Pair<BitSet,ArrayModifiableDBIDs> |
findParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Pair<BitSet,ArrayModifiableDBIDs> child,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns the parent of the specified cluster |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
private boolean |
isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
List<Cluster<SubspaceModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of the children clusters. |
Clustering<SubspaceModel<V>> |
run(Database database,
Relation<V> relation)
Performs the DiSH algorithm on the given database. |
private List<Cluster<SubspaceModel<V>>> |
sortClusters(Relation<V> database,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order. |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
---|
run |
Field Detail |
---|
private static final Logging logger
public static final OptionID EPSILON_ID
Default value: 0.001
Key: -dish.epsilon
public static final OptionID MU_ID
Default value: 1
Key: -dish.mu
private double epsilon
EPSILON_ID
.
private DiSHDistanceFunction dishDistance
private Collection<Pair<OptionID,Object>> opticsAlgorithmParameters
Constructor Detail |
---|
public DiSH(double epsilon, DiSHDistanceFunction dishDistance, Collection<Pair<OptionID,Object>> opticsAlgorithmParameters)
epsilon
- Epsilon valuedishDistance
- Distance functionopticsAlgorithmParameters
- OPTICS parametersMethod Detail |
---|
public Clustering<SubspaceModel<V>> run(Database database, Relation<V> relation) throws IllegalStateException
IllegalStateException
private Clustering<SubspaceModel<V>> computeClusters(Relation<V> database, ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder, DiSHDistanceFunction.Instance<V> distFunc)
database
- the database holding the objectsclusterOrder
- the cluster orderdistFunc
- Distance functionprivate Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> extractClusters(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder)
database
- the database storing the objectsdistFunc
- the distance functionclusterOrder
- the cluster order to extract the clusters from
private List<Cluster<SubspaceModel<V>>> sortClusters(Relation<V> database, Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
database
- the database storing the objectsclustersMap
- the mapping of bits sets to clusters
private void checkClusters(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap, int minpts)
database
- the database storing the objectsdistFunc
- the distance functionclustersMap
- the map containing the clustersminpts
- MinPtsprivate Pair<BitSet,ArrayModifiableDBIDs> findParent(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, Pair<BitSet,ArrayModifiableDBIDs> child, Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
database
- the database storing the objectsdistFunc
- the distance functionchild
- the child to search the parent forclustersMap
- the map containing the clusters
private void buildHierarchy(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, List<Cluster<SubspaceModel<V>>> clusters, int dimensionality)
distFunc
- the distance functionclusters
- the sorted list of clustersdimensionality
- the dimensionality of the datadatabase
- the database containing the data objectsprivate boolean isParent(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, Cluster<SubspaceModel<V>> parent, List<Cluster<SubspaceModel<V>>> children)
database
- the database containing the objectsdistFunc
- the distance function for distance computation between the
clustersparent
- the parent to be testedchildren
- the list of children to be tested
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<Clustering<SubspaceModel<V extends NumberVector<V,?>>>>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<SubspaceModel<V extends NumberVector<V,?>>>>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |