|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<Clustering<CorrelationModel<V>>> de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ERiC<V>
V
- the type of NumberVector handled by this Algorithm@Title(value="ERiC: Exploring Relationships among Correlation Clusters") @Description(value="Performs the DBSCAN algorithm on the data using a special distance function taking into account correlations among attributes and builds a hierarchy that allows multiple inheritance from the correlation clustering result.") @Reference(authors="E. Achtert, C. B\u00f6hm, H.-P. Kriegel, P. Kr\u00f6ger, and A. Zimek", title="On Exploring Complex Relationships of Correlation Clusters", booktitle="Proc. 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007), Banff, Canada, 2007", url="http://dx.doi.org/10.1109/SSDBM.2007.21") public class ERiC<V extends NumberVector<V,?>>
Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.
Reference: E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek: On
Exploring Complex Relationships of Correlation Clusters.
In Proc. 19th International Conference on Scientific and Statistical Database
Management (SSDBM 2007), Banff, Canada, 2007.
Nested Class Summary | |
---|---|
static class |
ERiC.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
Field Summary | |
---|---|
private COPAC<V,IntegerDistance> |
copacAlgorithm
The COPAC clustering algorithm. |
private static Logging |
logger
The logger for this class. |
Constructor Summary | |
---|---|
ERiC(COPAC<V,IntegerDistance> copacAlgorithm)
Constructor. |
Method Summary | |
---|---|
private void |
buildHierarchy(SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> clusterMap,
DistanceQuery<V,IntegerDistance> query)
|
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> |
extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
private boolean |
isParent(ERiCDistanceFunction distanceFunction,
Cluster<CorrelationModel<V>> parent,
List<Cluster<CorrelationModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of the children clusters. |
private ListParameterization |
pcaParameters(int correlationDimension)
Returns the parameters for the PCA for the specified correlation dimension. |
Clustering<CorrelationModel<V>> |
run(Relation<V> relation)
Performs the ERiC algorithm on the given database. |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
---|
run |
Field Detail |
---|
private static final Logging logger
private COPAC<V extends NumberVector<V,?>,IntegerDistance> copacAlgorithm
Constructor Detail |
---|
public ERiC(COPAC<V,IntegerDistance> copacAlgorithm)
copacAlgorithm
- COPAC to useMethod Detail |
---|
public Clustering<CorrelationModel<V>> run(Relation<V> relation) throws IllegalStateException
relation
- Relation to process
IllegalStateException
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> extractCorrelationClusters(Clustering<Model> copacResult, Relation<V> database, int dimensionality)
copacResult
- database
- the database containing the objectsdimensionality
- the dimensionality of the feature space
private ListParameterization pcaParameters(int correlationDimension)
correlationDimension
- the correlation dimension
private void buildHierarchy(SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> clusterMap, DistanceQuery<V,IntegerDistance> query) throws IllegalStateException
IllegalStateException
private boolean isParent(ERiCDistanceFunction distanceFunction, Cluster<CorrelationModel<V>> parent, List<Cluster<CorrelationModel<V>>> children)
distanceFunction
- the distance function for distance computation
between the clustersparent
- the parent to be testedchildren
- the list of children to be tested
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<Clustering<CorrelationModel<V extends NumberVector<V,?>>>>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<CorrelationModel<V extends NumberVector<V,?>>>>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |