|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R> de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm<O,D,CollectionResult<DoubleVector>> de.lmu.ifi.dbs.elki.algorithm.statistics.RankingQualityHistogram<O,D>
O
- Object typeD
- Distance type@Title(value="Ranking Quality Histogram") @Description(value="Evaluates the effectiveness of a distance function via the obtained rankings.") public class RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. For each point, the neighbors are sorted by distance, then the ROC AUC is computed. A score of 1 means that the distance function provides a perfect ordering of relevant neighbors first, then irrelevant neighbors. A value of 0.5 can be obtained by random sorting. A value of 0 means the distance function is inverted, i.e. a similarity. TODO: Add sampling
Nested Class Summary | |
---|---|
static class |
RankingQualityHistogram.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. |
Field Summary | |
---|---|
static OptionID |
HISTOGRAM_BINS_ID
Option to configure the number of bins to use. |
private static Logging |
logger
The logger for this class. |
(package private) int |
numbins
Number of bins to use. |
Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
---|
DISTANCE_FUNCTION_ID |
Constructor Summary | |
---|---|
RankingQualityHistogram(DistanceFunction<? super O,D> distanceFunction,
int numbins)
Constructor. |
Method Summary | |
---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
HistogramResult<DoubleVector> |
run(Database database,
Relation<O> relation)
|
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
---|
getDistanceFunction |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
private static final Logging logger
public static final OptionID HISTOGRAM_BINS_ID
int numbins
Constructor Detail |
---|
public RankingQualityHistogram(DistanceFunction<? super O,D> distanceFunction, int numbins)
distanceFunction
- Distance function to evaluatenumbins
- Number of binsMethod Detail |
---|
public HistogramResult<DoubleVector> run(Database database, Relation<O> relation)
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<CollectionResult<DoubleVector>>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<CollectionResult<DoubleVector>>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |