|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R> de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm<O,D,Clustering<Model>> de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN<O,D>
O
- the type of Object the algorithm is applied toD
- the type of Distance used@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="M. Ester, H.-P. Kriegel, J. Sander, and X. Xu", title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96), Portland, OR, 1996", url="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1980") public class DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
Reference:
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise.
In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96),
Portland, OR, 1996.
Nested Class Summary | |
---|---|
static class |
DBSCAN.Parameterizer<O,D extends Distance<D>>
Parameterization class. |
Field Summary | |
---|---|
private D |
epsilon
Holds the value of EPSILON_ID . |
static OptionID |
EPSILON_ID
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified. |
private static Logging |
logger
The logger for this class. |
protected int |
minpts
Holds the value of MINPTS_ID . |
static OptionID |
MINPTS_ID
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
protected ModifiableDBIDs |
noise
Holds a set of noise. |
protected ModifiableDBIDs |
processedIDs
Holds a set of processed ids. |
protected List<ModifiableDBIDs> |
resultList
Holds a list of clusters found. |
Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
---|
DISTANCE_FUNCTION_ID |
Constructor Summary | |
---|---|
DBSCAN(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor with parameters. |
Method Summary | |
---|---|
protected void |
expandCluster(Database database,
RangeQuery<O,D> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster. |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
Clustering<Model> |
run(Database database,
Relation<O> relation)
Performs the DBSCAN algorithm on the given database. |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
---|
getDistanceFunction |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
---|
run |
Field Detail |
---|
private static final Logging logger
public static final OptionID EPSILON_ID
private D extends Distance<D> epsilon
EPSILON_ID
.
public static final OptionID MINPTS_ID
protected int minpts
MINPTS_ID
.
protected List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
Constructor Detail |
---|
public DBSCAN(DistanceFunction<? super O,D> distanceFunction, D epsilon, int minpts)
distanceFunction
- Distance functionepsilon
- Epsilon valueminpts
- Minpts parameterMethod Detail |
---|
public Clustering<Model> run(Database database, Relation<O> relation)
protected void expandCluster(Database database, RangeQuery<O,D> rangeQuery, DBID startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
database
- the database on which the algorithm is runrangeQuery
- Range query to usestartObjectID
- potential seed of a new potential clusterobjprog
- the progress object for logging the current statuspublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<Clustering<Model>>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<Model>>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |