|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.utilities.scaling.outlier.SigmoidOutlierScalingFunction
@Reference(authors="J. Gao, P.-N. Tan", title="Converting Output Scores from Outlier Detection Algorithms into Probability Estimates", booktitle="Proc. Sixth International Conference on Data Mining, 2006. ICDM\'06.", url="http://dx.doi.org/10.1109/ICDM.2006.43") public class SigmoidOutlierScalingFunction
Tries to fit a sigmoid to the outlier scores and use it to convert the values to probability estimates in the range of 0.0 to 1.0
Field Summary | |
---|---|
(package private) double |
Afinal
Sigmoid parameter |
(package private) double |
Bfinal
Sigmoid parameter |
private static Logging |
logger
The logger for this class. |
Constructor Summary | |
---|---|
SigmoidOutlierScalingFunction()
|
Method Summary | |
---|---|
double |
getMax()
Get maximum resulting value. |
double |
getMin()
Get minimum resulting value. |
double |
getScaled(double value)
Transform a given value using the scaling function. |
private double[] |
MStepLevenbergMarquardt(double a,
double b,
ArrayDBIDs ids,
BitSet t,
Relation<Double> scores)
M-Step using a modified Levenberg-Marquardt method. |
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be called. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
private static final Logging logger
double Afinal
double Bfinal
Constructor Detail |
---|
public SigmoidOutlierScalingFunction()
Method Detail |
---|
public void prepare(OutlierResult or)
OutlierScalingFunction
prepare
in interface OutlierScalingFunction
or
- Outlier result to useprivate final double[] MStepLevenbergMarquardt(double a, double b, ArrayDBIDs ids, BitSet t, Relation<Double> scores)
Implementation based on:
H.-T. Lin, C.-J. Lin, R. C. Weng:
A Note on Platt’s Probabilistic Outputs for Support Vector Machines
a
- A parameterb
- B parameterids
- Ids to processt
- Bitset containing the assignmentscores
- Scores
public double getMax()
ScalingFunction
Double.NaN
or
Double.POSITIVE_INFINITY
.
getMax
in interface ScalingFunction
public double getMin()
ScalingFunction
Double.NaN
or
Double.NEGATIVE_INFINITY
.
getMin
in interface ScalingFunction
public double getScaled(double value)
ScalingFunction
getScaled
in interface ScalingFunction
value
- Original value
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |