|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.distance.similarityfunction.AbstractPrimitiveSimilarityFunction<O,DoubleDistance>
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.LinearKernelFunction<O>
O - vector typepublic class LinearKernelFunction<O extends NumberVector<?,?>>

Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 defined by V1^T*V2.
| Constructor Summary | |
|---|---|
LinearKernelFunction()
Provides a linear Kernel function that computes a similarity between the two vectors V1 and V2 defined by V1^T*V2. |
|
| Method Summary | ||
|---|---|---|
DoubleDistance |
distance(O fv1,
O fv2)
Computes the distance between two given DatabaseObjects according to this distance function. |
|
DoubleDistance |
getDistanceFactory()
Method to get the distance functions factory. |
|
VectorFieldTypeInformation<? super O> |
getInputTypeRestriction()
Get the input data type of the function. |
|
|
instantiate(Relation<T> database)
Instantiate with a representation to get the actual similarity query. |
|
boolean |
isMetric()
Is this distance function metric (in particular, does it satisfy the triangle equation?) |
|
DoubleDistance |
similarity(O o1,
O o2)
Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 definded by V1^T*V2 |
|
| Methods inherited from class de.lmu.ifi.dbs.elki.distance.similarityfunction.AbstractPrimitiveSimilarityFunction |
|---|
isSymmetric |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction |
|---|
isSymmetric |
| Constructor Detail |
|---|
public LinearKernelFunction()
| Method Detail |
|---|
public DoubleDistance similarity(O o1,
O o2)
similarity in interface PrimitiveSimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>similarity in class AbstractPrimitiveSimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>o1 - first feature vectoro2 - second feature vector
DoubleDistance.
public DoubleDistance distance(O fv1,
O fv2)
PrimitiveDistanceFunction
distance in interface PrimitiveDistanceFunction<O extends NumberVector<?,?>,DoubleDistance>fv1 - first DatabaseObjectfv2 - second DatabaseObject
public VectorFieldTypeInformation<? super O> getInputTypeRestriction()
SimilarityFunction
getInputTypeRestriction in interface DistanceFunction<O extends NumberVector<?,?>,DoubleDistance>getInputTypeRestriction in interface PrimitiveDistanceFunction<O extends NumberVector<?,?>,DoubleDistance>getInputTypeRestriction in interface PrimitiveSimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>getInputTypeRestriction in interface SimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>getInputTypeRestriction in class AbstractPrimitiveSimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>public DoubleDistance getDistanceFactory()
DistanceFunction
getDistanceFactory in interface DistanceFunction<O extends NumberVector<?,?>,DoubleDistance>getDistanceFactory in interface SimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>public boolean isMetric()
DistanceFunction
isMetric in interface DistanceFunction<O extends NumberVector<?,?>,DoubleDistance>true when metric.public <T extends O> DistanceSimilarityQuery<T,DoubleDistance> instantiate(Relation<T> database)
SimilarityFunction
instantiate in interface DistanceFunction<O extends NumberVector<?,?>,DoubleDistance>instantiate in interface SimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>instantiate in class AbstractPrimitiveSimilarityFunction<O extends NumberVector<?,?>,DoubleDistance>database - Representation to use
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||