de.lmu.ifi.dbs.elki.algorithm.outlier
Class AggarwalYuNaive<V extends NumberVector<?,?>>

java.lang.Object
  extended by de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<OutlierResult>
      extended by de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier<V>
          extended by de.lmu.ifi.dbs.elki.algorithm.outlier.AggarwalYuNaive<V>
All Implemented Interfaces:
Algorithm, OutlierAlgorithm, InspectionUtilFrequentlyScanned, Parameterizable

@Title(value="BruteForce: Outlier detection for high dimensional data")
@Description(value="Examines all possible sets of k dimensional projections")
@Reference(authors="C.C. Aggarwal, P. S. Yu",
           title="Outlier detection for high dimensional data",
           booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2001), Santa Barbara, CA, 2001",
           url="http://dx.doi.org/10.1145/375663.375668")
public class AggarwalYuNaive<V extends NumberVector<?,?>>
extends AbstractAggarwalYuOutlier<V>

BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers. The evolutionary approach is implemented as AggarwalYuEvolutionary.

Reference:
Outlier detection for high dimensional data Outlier detection for high dimensional data
C.C. Aggarwal, P. S. Yu
International Conference on Management of Data Proceedings of the 2001 ACM SIGMOD international conference on Management of data 2001, Santa Barbara, California, United States


Nested Class Summary
static class AggarwalYuNaive.Parameterizer<V extends NumberVector<?,?>>
          Parameterization class.
 
Field Summary
private static Logging logger
          The logger for this class.
 
Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier
DONT_CARE, k, K_ID, phi, PHI_ID
 
Constructor Summary
AggarwalYuNaive(int k, int phi)
          Constructor.
 
Method Summary
protected  Logging getLogger()
          Get the (STATIC) logger for this class.
 OutlierResult run(Relation<V> relation)
          Run the algorithm on the given relation.
 
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier
buildRanges, computeSubspace, computeSubspaceForGene, getInputTypeRestriction, sparsity
 
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm
makeParameterDistanceFunction, run
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm
run
 

Field Detail

logger

private static final Logging logger
The logger for this class.

Constructor Detail

AggarwalYuNaive

public AggarwalYuNaive(int k,
                       int phi)
Constructor.

Parameters:
k - K
phi - Phi
Method Detail

run

public OutlierResult run(Relation<V> relation)
Run the algorithm on the given relation.

Parameters:
relation - Relation
Returns:
Outlier detection result

getLogger

protected Logging getLogger()
Description copied from class: AbstractAlgorithm
Get the (STATIC) logger for this class.

Specified by:
getLogger in class AbstractAlgorithm<OutlierResult>
Returns:
the static logger

Release 0.4.0 (2011-09-20_1324)