|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractDatabaseDistanceFunction<O,D> de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractIndexBasedDistanceFunction<V,P,PreferenceVectorBasedCorrelationDistance> de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.AbstractPreferenceVectorBasedCorrelationDistanceFunction<V,P>
V
- the type of NumberVector to compute the distances in betweenP
- the type of Preprocessor usedpublic abstract class AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
Abstract super class for all preference vector based correlation distance functions.
Nested Class Summary | |
---|---|
static class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
Instance to compute the distances on an actual database. |
static class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Parameterizer<F extends IndexFactory<?,?>>
Parameterization class. |
Field Summary | |
---|---|
private double |
epsilon
Holds the value of EPSILON_ID . |
static OptionID |
EPSILON_ID
Parameter to specify the maximum distance between two vectors with equal preference vectors before considering them as parallel, must be a double equal to or greater than 0. |
Fields inherited from class de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractIndexBasedDistanceFunction |
---|
indexFactory |
Fields inherited from interface de.lmu.ifi.dbs.elki.distance.distancefunction.IndexBasedDistanceFunction |
---|
INDEX_ID |
Constructor Summary | |
---|---|
AbstractPreferenceVectorBasedCorrelationDistanceFunction(IndexFactory<V,P> indexFactory,
double epsilon)
Constructor. |
Method Summary | |
---|---|
boolean |
equals(Object obj)
|
PreferenceVectorBasedCorrelationDistance |
getDistanceFactory()
Method to get the distance functions factory. |
double |
getEpsilon()
Returns epsilon. |
Methods inherited from class de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractIndexBasedDistanceFunction |
---|
getInputTypeRestriction, isMetric, isSymmetric |
Methods inherited from class java.lang.Object |
---|
clone, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction |
---|
instantiate |
Field Detail |
---|
public static final OptionID EPSILON_ID
Default value: 0.001
Key: -pvbasedcorrelationdf.epsilon
private double epsilon
EPSILON_ID
.
Constructor Detail |
---|
public AbstractPreferenceVectorBasedCorrelationDistanceFunction(IndexFactory<V,P> indexFactory, double epsilon)
indexFactory
- Index factoryepsilon
- Epsilon valueMethod Detail |
---|
public PreferenceVectorBasedCorrelationDistance getDistanceFactory()
DistanceFunction
getDistanceFactory
in interface DistanceFunction<V extends NumberVector<?,?>,PreferenceVectorBasedCorrelationDistance>
getDistanceFactory
in class AbstractDatabaseDistanceFunction<V extends NumberVector<?,?>,PreferenceVectorBasedCorrelationDistance>
public double getEpsilon()
public boolean equals(Object obj)
equals
in class Object
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |