|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R> de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm<O,D,ClusterOrderResult<D>> de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICS<O,D>
O
- the type of DatabaseObjects handled by the algorithmD
- the type of Distance used to discern objects@Title(value="OPTICS: Density-Based Hierarchical Clustering") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minPts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander", title="OPTICS: Ordering Points to Identify the Clustering Structure", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD \'99)", url="http://dx.doi.org/10.1145/304181.304187") public class OPTICS<O,D extends Distance<D>>
OPTICS provides the OPTICS algorithm.
Reference: M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander: OPTICS:
Ordering Points to Identify the Clustering Structure.
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '99).
Nested Class Summary | |
---|---|
static class |
OPTICS.Parameterizer<O,D extends Distance<D>>
Parameterization class. |
Field Summary | |
---|---|
private D |
epsilon
Hold the value of EPSILON_ID . |
static OptionID |
EPSILON_ID
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified. |
private static Logging |
logger
The logger for this class. |
private int |
minpts
Holds the value of MINPTS_ID . |
static OptionID |
MINPTS_ID
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
private ModifiableDBIDs |
processedIDs
Holds a set of processed ids. |
Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
---|
DISTANCE_FUNCTION_ID |
Constructor Summary | |
---|---|
OPTICS(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor. |
Method Summary | |
---|---|
protected void |
expandClusterOrder(ClusterOrderResult<D> clusterOrder,
Database database,
RangeQuery<O,D> rangeQuery,
DBID objectID,
D epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
protected void |
expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
D |
getDistanceFactory()
Get the distance factory. |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
int |
getMinPts()
Get the minpts value used. |
ClusterOrderResult<D> |
run(Database database,
Relation<O> relation)
Run OPTICS on the database. |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
---|
getDistanceFunction |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICSTypeAlgorithm |
---|
run |
Field Detail |
---|
private static final Logging logger
public static final OptionID EPSILON_ID
public static final OptionID MINPTS_ID
private D extends Distance<D> epsilon
EPSILON_ID
.
private int minpts
MINPTS_ID
.
private ModifiableDBIDs processedIDs
Constructor Detail |
---|
public OPTICS(DistanceFunction<? super O,D> distanceFunction, D epsilon, int minpts)
distanceFunction
- Distance functionepsilon
- Epsilon valueminpts
- Minpts valueMethod Detail |
---|
public ClusterOrderResult<D> run(Database database, Relation<O> relation)
database
- Databaserelation
- Relation
protected void expandClusterOrder(ClusterOrderResult<D> clusterOrder, Database database, RangeQuery<O,D> rangeQuery, DBID objectID, D epsilon, FiniteProgress progress)
clusterOrder
- Cluster order result to expanddatabase
- the database on which the algorithm is runrangeQuery
- the range query to useobjectID
- the currently processed objectepsilon
- Epsilon range valueprogress
- the progress object to actualize the current progress if
the algorithmprotected void expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder, Database database, RangeQuery<O,DoubleDistance> rangeQuery, DBID objectID, DoubleDistance epsilon, FiniteProgress progress)
clusterOrder
- Cluster order result to expanddatabase
- the database on which the algorithm is runrangeQuery
- the range query to useobjectID
- the currently processed objectepsilon
- Query epsilonprogress
- the progress object to actualize the current progress if
the algorithmpublic int getMinPts()
OPTICSTypeAlgorithm
getMinPts
in interface OPTICSTypeAlgorithm<D extends Distance<D>>
public D getDistanceFactory()
OPTICSTypeAlgorithm
getDistanceFactory
in interface OPTICSTypeAlgorithm<D extends Distance<D>>
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<ClusterOrderResult<D extends Distance<D>>>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<ClusterOrderResult<D extends Distance<D>>>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |