|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R>
de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm<O,D,ClusterOrderResult<D>>
de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICS<O,D>
O - the type of DatabaseObjects handled by the algorithmD - the type of Distance used to discern objects@Title(value="OPTICS: Density-Based Hierarchical Clustering")
@Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minPts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.")
@Reference(authors="M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander",
title="OPTICS: Ordering Points to Identify the Clustering Structure",
booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD \'99)",
url="http://dx.doi.org/10.1145/304181.304187")
public class OPTICS<O,D extends Distance<D>>
OPTICS provides the OPTICS algorithm.
Reference: M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander: OPTICS:
Ordering Points to Identify the Clustering Structure.
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '99).
| Nested Class Summary | |
|---|---|
static class |
OPTICS.Parameterizer<O,D extends Distance<D>>
Parameterization class. |
| Field Summary | |
|---|---|
private D |
epsilon
Hold the value of EPSILON_ID. |
static OptionID |
EPSILON_ID
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified. |
private static Logging |
logger
The logger for this class. |
private int |
minpts
Holds the value of MINPTS_ID. |
static OptionID |
MINPTS_ID
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
private ModifiableDBIDs |
processedIDs
Holds a set of processed ids. |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
|---|
DISTANCE_FUNCTION_ID |
| Constructor Summary | |
|---|---|
OPTICS(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor. |
|
| Method Summary | |
|---|---|
protected void |
expandClusterOrder(ClusterOrderResult<D> clusterOrder,
Database database,
RangeQuery<O,D> rangeQuery,
DBID objectID,
D epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
protected void |
expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
D |
getDistanceFactory()
Get the distance factory. |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
int |
getMinPts()
Get the minpts value used. |
ClusterOrderResult<D> |
run(Database database,
Relation<O> relation)
Run OPTICS on the database. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
|---|
getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
makeParameterDistanceFunction, run |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICSTypeAlgorithm |
|---|
run |
| Field Detail |
|---|
private static final Logging logger
public static final OptionID EPSILON_ID
public static final OptionID MINPTS_ID
private D extends Distance<D> epsilon
EPSILON_ID.
private int minpts
MINPTS_ID.
private ModifiableDBIDs processedIDs
| Constructor Detail |
|---|
public OPTICS(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
distanceFunction - Distance functionepsilon - Epsilon valueminpts - Minpts value| Method Detail |
|---|
public ClusterOrderResult<D> run(Database database,
Relation<O> relation)
database - Databaserelation - Relation
protected void expandClusterOrder(ClusterOrderResult<D> clusterOrder,
Database database,
RangeQuery<O,D> rangeQuery,
DBID objectID,
D epsilon,
FiniteProgress progress)
clusterOrder - Cluster order result to expanddatabase - the database on which the algorithm is runrangeQuery - the range query to useobjectID - the currently processed objectepsilon - Epsilon range valueprogress - the progress object to actualize the current progress if
the algorithm
protected void expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
clusterOrder - Cluster order result to expanddatabase - the database on which the algorithm is runrangeQuery - the range query to useobjectID - the currently processed objectepsilon - Query epsilonprogress - the progress object to actualize the current progress if
the algorithmpublic int getMinPts()
OPTICSTypeAlgorithm
getMinPts in interface OPTICSTypeAlgorithm<D extends Distance<D>>public D getDistanceFactory()
OPTICSTypeAlgorithm
getDistanceFactory in interface OPTICSTypeAlgorithm<D extends Distance<D>>public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<ClusterOrderResult<D extends Distance<D>>>protected Logging getLogger()
AbstractAlgorithm
getLogger in class AbstractAlgorithm<ClusterOrderResult<D extends Distance<D>>>
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||