|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<OutlierResult> de.lmu.ifi.dbs.elki.algorithm.outlier.GaussianUniformMixture<V>
V
- Vector Type@Title(value="Gaussian-Uniform Mixture Model Outlier Detection") @Description(value="Fits a mixture model consisting of a Gaussian and a uniform distribution to the data.") @Reference(prefix="Generalization using the likelihood gain as outlier score of", authors="Eskin, Eleazar", title="Anomaly detection over noisy data using learned probability distributions", booktitle="Proc. of the Seventeenth International Conference on Machine Learning (ICML-2000)") public class GaussianUniformMixture<V extends NumberVector<V,?>>
Outlier detection algorithm using a mixture model approach. The data is modeled as a mixture of two distributions, a Gaussian distribution for ordinary data and a uniform distribution for outliers. At first all Objects are in the set of normal objects and the set of anomalous objects is empty. An iterative procedure then transfers objects from the ordinary set to the anomalous set if the transfer increases the overall likelihood of the data.
Reference:
Eskin, Eleazar: Anomaly detection over noisy data using learned probability
distributions. In Proc. of the Seventeenth International Conference on
Machine Learning (ICML-2000).
Nested Class Summary | |
---|---|
static class |
GaussianUniformMixture.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
Field Summary | |
---|---|
private double |
c
Holds the value of C_ID . |
static OptionID |
C_ID
Parameter to specify the cutoff. |
static OptionID |
L_ID
Parameter to specify the fraction of expected outliers. |
private static Logging |
logger
The logger for this class. |
private double |
logl
log(l) precomputed |
private double |
logml
log(1-l) precomputed |
private static double |
SINGULARITY_CHEAT
Small value to increment diagonally of a matrix in order to avoid singularity before building the inverse. |
Constructor Summary | |
---|---|
GaussianUniformMixture(double l,
double c)
Constructor with parameters. |
Method Summary | |
---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
private double |
loglikelihoodAnomalous(DBIDs anomalousObjs)
Loglikelihood anomalous objects. |
private double |
loglikelihoodNormal(DBIDs objids,
Relation<V> database)
Computes the loglikelihood of all normal objects. |
OutlierResult |
run(Relation<V> relation)
|
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm |
---|
run |
Field Detail |
---|
private static final Logging logger
public static final OptionID L_ID
public static final OptionID C_ID
private static final double SINGULARITY_CHEAT
private double c
C_ID
.
private double logl
private double logml
Constructor Detail |
---|
public GaussianUniformMixture(double l, double c)
l
- l valuec
- c valueMethod Detail |
---|
public OutlierResult run(Relation<V> relation) throws IllegalStateException
IllegalStateException
private double loglikelihoodAnomalous(DBIDs anomalousObjs)
anomalousObjs
-
private double loglikelihoodNormal(DBIDs objids, Relation<V> database)
objids
- Object IDs for 'normal' objects.database
- Database
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<OutlierResult>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<OutlierResult>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |