|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<Clustering<Model>> de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering<O>
O
- the type of Object the algorithm is applied on@Title(value="SNN: Shared Nearest Neighbor Clustering") @Description(value="Algorithm to find shared-nearest-neighbors-density-connected sets in a database based on the parameters \'minPts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="L. Ert\u00f6z, M. Steinbach, V. Kumar", title="Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data", booktitle="Proc. of SIAM Data Mining (SDM), 2003", url="http://www.siam.org/meetings/sdm03/proceedings/sdm03_05.pdf") public class SNNClustering<O>
Shared nearest neighbor clustering.
Reference: L. Ertöz, M. Steinbach, V. Kumar: Finding Clusters of Different
Sizes, Shapes, and Densities in Noisy, High Dimensional Data.
In: Proc. of SIAM Data Mining (SDM), 2003.
Nested Class Summary | |
---|---|
static class |
SNNClustering.Parameterizer<O>
Parameterization class. |
Field Summary | |
---|---|
private IntegerDistance |
epsilon
Holds the value of EPSILON_ID . |
static OptionID |
EPSILON_ID
Parameter to specify the minimum SNN density, must be an integer greater than 0. |
private static Logging |
logger
The logger for this class. |
private int |
minpts
Holds the value of MINPTS_ID . |
static OptionID |
MINPTS_ID
Parameter to specify the threshold for minimum number of points in the epsilon-SNN-neighborhood of a point, must be an integer greater than 0. |
protected ModifiableDBIDs |
noise
Holds a set of noise. |
protected ModifiableDBIDs |
processedIDs
Holds a set of processed ids. |
protected List<ModifiableDBIDs> |
resultList
Holds a list of clusters found. |
private SharedNearestNeighborSimilarityFunction<O> |
similarityFunction
The similarity function for the shared nearest neighbor similarity. |
Constructor Summary | |
---|---|
SNNClustering(SharedNearestNeighborSimilarityFunction<O> similarityFunction,
IntegerDistance epsilon,
int minpts)
Constructor. |
Method Summary | |
---|---|
protected void |
expandCluster(SimilarityQuery<O,IntegerDistance> snnInstance,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster adapted to SNN criterion. |
protected List<DBID> |
findSNNNeighbors(SimilarityQuery<O,IntegerDistance> snnInstance,
DBID queryObject)
Returns the shared nearest neighbors of the specified query object in the given database. |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
Clustering<Model> |
run(Database database,
Relation<O> relation)
Perform SNN clustering |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
makeParameterDistanceFunction, run |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
---|
run |
Field Detail |
---|
private static final Logging logger
public static final OptionID EPSILON_ID
private IntegerDistance epsilon
EPSILON_ID
.
public static final OptionID MINPTS_ID
private int minpts
MINPTS_ID
.
protected List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
private SharedNearestNeighborSimilarityFunction<O> similarityFunction
Constructor Detail |
---|
public SNNClustering(SharedNearestNeighborSimilarityFunction<O> similarityFunction, IntegerDistance epsilon, int minpts)
similarityFunction
- Similarity functionepsilon
- Epsilonminpts
- MinptsMethod Detail |
---|
public Clustering<Model> run(Database database, Relation<O> relation)
database
- Databaserelation
- Relation
protected List<DBID> findSNNNeighbors(SimilarityQuery<O,IntegerDistance> snnInstance, DBID queryObject)
snnInstance
- shared nearest neighborsqueryObject
- the query object
protected void expandCluster(SimilarityQuery<O,IntegerDistance> snnInstance, DBID startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
snnInstance
- shared nearest neighborsstartObjectID
- potential seed of a new potential clusterobjprog
- the progress object to report about the progress of
clusteringpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<Clustering<Model>>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<Model>>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |