|
||||||||||
PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES |
Algorithm
-Interface.
See:
Description
Interface Summary | |
---|---|
ClusteringAlgorithm<C extends Clustering<? extends Model>> | Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
OPTICSTypeAlgorithm<D extends Distance<D>> | Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc. |
Class Summary | |
---|---|
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>> | Abstract superclass for projected clustering algorithms, like PROCLUS
and ORCLUS . |
AbstractProjectedClustering.Parameterizer | Parameterization class. |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>> | Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. |
AbstractProjectedDBSCAN.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>> | Parameterization class. |
DBSCAN<O,D extends Distance<D>> | DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database. |
DBSCAN.Parameterizer<O,D extends Distance<D>> | Parameterization class. |
DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>> | DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database. |
DeLiClu.Parameterizer<NV extends NumberVector<NV,?>,D extends Distance<D>> | Parameterization class. |
EM<V extends NumberVector<V,?>> | Provides the EM algorithm (clustering by expectation maximization). |
EM.Parameterizer<V extends NumberVector<V,?>> | Parameterization class. |
KMeans<V extends NumberVector<V,?>,D extends Distance<D>> | Provides the k-means algorithm. |
KMeans.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>> | Parameterization class. |
OPTICS<O,D extends Distance<D>> | OPTICS provides the OPTICS algorithm. |
OPTICS.Parameterizer<O,D extends Distance<D>> | Parameterization class. |
OPTICSXi<N extends NumberDistance<N,?>> | Class to handle OPTICS Xi extraction. |
OPTICSXi.Parameterizer<D extends NumberDistance<D,?>> | Parameterization class. |
OPTICSXi.SteepArea | Data structure to represent a steep-down-area for the xi method. |
OPTICSXi.SteepAreaResult | Result containing the chi-steep areas. |
OPTICSXi.SteepDownArea | Data structure to represent a steep-down-area for the xi method. |
OPTICSXi.SteepScanPosition<N extends NumberDistance<N,?>> | Position when scanning for steep areas |
OPTICSXi.SteepUpArea | Data structure to represent a steep-down-area for the xi method. |
SLINK<O,D extends Distance<D>> | Efficient implementation of the Single-Link Algorithm SLINK of R. |
SLINK.CompareByLambda<D extends Distance<D>> | Order a DBID collection by the lambda value. |
SLINK.Parameterizer<O,D extends Distance<D>> | Parameterization class. |
SNNClustering<O> | Shared nearest neighbor clustering. |
SNNClustering.Parameterizer<O> | Parameterization class. |
Clustering algorithms
Clustering algorithms are supposed to implement theAlgorithm
-Interface.
The more specialized interface ClusteringAlgorithm
requires an implementing algorithm to provide a special result class suitable as a partitioning of the database.
More relaxed clustering algorithms are allowed to provide a result that is a fuzzy clustering, does not
partition the database complete or is in any other sense a relaxed clustering result.
de.lmu.ifi.dbs.elki.algorithm
|
|
|||||||||||
PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES |