|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Relation | |
---|---|
de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash | Helper classes for the CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood | Spatial outlier neighborhood classes |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted | Weighted Neighborhood definitions. |
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial | Trivial outlier detection algorithms: no outliers, all outliers, label outliers. |
de.lmu.ifi.dbs.elki.algorithm.statistics | Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) |
de.lmu.ifi.dbs.elki.application.visualization | Visualization applications in ELKI. |
de.lmu.ifi.dbs.elki.data.model | Cluster models classes for various algorithms. |
de.lmu.ifi.dbs.elki.database | ELKI database layer - loading, storing, indexing and accessing data |
de.lmu.ifi.dbs.elki.database.query | Database queries - computing distances, neighbors, similarities - API and general documentation. |
de.lmu.ifi.dbs.elki.database.query.distance | Prepared queries for distances. |
de.lmu.ifi.dbs.elki.database.query.knn | Prepared queries for k nearest neighbor (kNN) queries. |
de.lmu.ifi.dbs.elki.database.query.range | Prepared queries for ε-range queries. |
de.lmu.ifi.dbs.elki.database.query.rknn | Prepared queries for reverse k nearest neighbor (rkNN) queries. |
de.lmu.ifi.dbs.elki.database.query.similarity | Prepared queries for similarity functions. |
de.lmu.ifi.dbs.elki.database.relation | Relations, materialized and virtual (views). |
de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. |
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | Distance functions deriving distances from e.g. similarity measures |
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | Distance functions based on subspaces. |
de.lmu.ifi.dbs.elki.distance.similarityfunction | Similarity functions. |
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | Kernel functions. |
de.lmu.ifi.dbs.elki.evaluation.roc | Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve) |
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix | Render a distance matrix to visualize a clustering-distance-combination. |
de.lmu.ifi.dbs.elki.index | Index structure implementations |
de.lmu.ifi.dbs.elki.index.preprocessed | Index structure based on preprocessors |
de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. |
de.lmu.ifi.dbs.elki.index.preprocessed.localpca | Index using a preprocessed local PCA. |
de.lmu.ifi.dbs.elki.index.preprocessed.preference | Indexes storing preference vectors. |
de.lmu.ifi.dbs.elki.index.preprocessed.snn | Indexes providing nearest neighbor sets |
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | Index using a preprocessed local subspaces. |
de.lmu.ifi.dbs.elki.index.tree | Tree-based index structures |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | MkAppTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | MkCoPTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | MkMaxTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | MkTabTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | MTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | DeLiCluTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | RStarTree |
de.lmu.ifi.dbs.elki.math.linearalgebra | Linear Algebra package provides classes and computational methods for operations on matrices. |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. |
de.lmu.ifi.dbs.elki.math.spacefillingcurves | Space filling curves. |
de.lmu.ifi.dbs.elki.result | Result types, representation and handling |
de.lmu.ifi.dbs.elki.result.optics | Result classes for OPTICS. |
de.lmu.ifi.dbs.elki.result.outlier | Outlier result classes |
de.lmu.ifi.dbs.elki.result.textwriter | Text serialization (CSV, Gnuplot, Console, ...) |
de.lmu.ifi.dbs.elki.utilities | Utility and helper classes - commonly used data structures, output formatting, exceptions, ... |
de.lmu.ifi.dbs.elki.utilities.referencepoints | Package containing strategies to obtain reference points Shared code for various algorithms that use reference points. |
de.lmu.ifi.dbs.elki.utilities.scaling.outlier | Scaling of Outlier scores, that require a statistical analysis of the occurring values |
de.lmu.ifi.dbs.elki.visualization | Visualization package of ELKI. |
de.lmu.ifi.dbs.elki.visualization.gui | Package to provide a visualization GUI. |
de.lmu.ifi.dbs.elki.visualization.projector | Projectors are responsible for finding appropriate projections for data relations. |
de.lmu.ifi.dbs.elki.visualization.scales | Scales handling for plotting. |
de.lmu.ifi.dbs.elki.visualization.visualizers | Visualizers for various results |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d | Visualizers based on 1D projections. |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm with parameters of type Relation | |
---|---|
protected BitSet[] |
APRIORI.frequentItemsets(Map<BitSet,Integer> support,
BitSet[] candidates,
Relation<BitVector> database)
Returns the frequent BitSets out of the given BitSets with respect to the given database. |
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids)
Runs the pca on the given set of IDs. |
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids,
V centroidDV)
Runs the pca on the given set of IDs and for the given centroid. |
AprioriResult |
APRIORI.run(Database database,
Relation<BitVector> relation)
Performs the APRIORI algorithm on the given database. |
Result |
DummyAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm. |
KNNDistanceOrderResult<D> |
KNNDistanceOrder.run(Database database,
Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified database. |
CollectionResult<CTriple<DBID,DBID,Double>> |
MaterializeDistances.run(Database database,
Relation<O> relation)
Iterates over all points in the database. |
DataStore<KNNList<D>> |
KNNJoin.run(Database database,
Relation<V> relation)
Joins in the given spatial database to each object its k-nearest neighbors. |
CorrelationAnalysisSolution<V> |
DependencyDerivator.run(Database database,
Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the given database based on a linear correlation PCA. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type Relation | |
---|---|
protected double |
EM.assignProbabilitiesToInstances(Relation<V> database,
List<Double> normDistrFactor,
List<V> means,
List<Matrix> invCovMatr,
List<Double> clusterWeights,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions. |
private Clustering<OPTICSModel> |
OPTICSXi.extractClusters(ClusterOrderResult<N> clusterOrderResult,
Relation<?> relation,
double ixi,
int minpts)
Extract clusters from a cluster order result. |
private DBID |
DeLiClu.getStartObject(Relation<NV> relation)
Returns the id of the start object for the run method. |
protected List<V> |
EM.initialMeans(Relation<V> relation)
Creates k random points distributed uniformly within the
attribute ranges of the given database. |
protected List<V> |
KMeans.means(List<? extends ModifiableDBIDs> clusters,
List<V> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database. |
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation)
|
ClusterOrderResult<D> |
DeLiClu.run(Database database,
Relation<NV> relation)
|
ClusterOrderResult<D> |
OPTICS.run(Database database,
Relation<O> relation)
Run OPTICS on the database. |
Result |
SLINK.run(Database database,
Relation<O> relation)
Performs the SLINK algorithm on the given database. |
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering |
Clustering<Model> |
DBSCAN.run(Database database,
Relation<O> relation)
Performs the DBSCAN algorithm on the given database. |
Clustering<MeanModel<V>> |
KMeans.run(Database database,
Relation<V> relation)
Run k-means |
Clustering<Model> |
AbstractProjectedDBSCAN.run(Database database,
Relation<V> relation)
|
Clustering<EMModel<V>> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database. |
protected List<? extends ModifiableDBIDs> |
KMeans.sort(List<V> means,
Relation<V> database)
Returns a list of clusters. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation declared as Relation | |
---|---|
private Relation<ParameterizationFunction> |
CASH.fulldatabase
The entire database |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type Relation | |
---|---|
private void |
ORCLUS.assign(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its closest seed. |
private MaterializedRelation<ParameterizationFunction> |
CASH.buildDB(int dim,
Matrix basis,
DBIDs ids,
Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into the specified subspace. |
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
CASHInterval interval)
Builds a database for the derivator consisting of the ids in the specified interval. |
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified interval. |
private double[] |
CASH.determineMinMaxDistance(Relation<ParameterizationFunction> relation,
int dimensionality)
Determines the minimum and maximum function value of all parameterization functions stored in the specified database. |
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left. |
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. |
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality dim for the
specified cluster. |
private void |
CASH.initHeap(Heap<IntegerPriorityObject<CASHInterval>> heap,
Relation<ParameterizationFunction> relation,
int dim,
DBIDs ids)
Initializes the heap with the root intervals. |
private List<ORCLUS.ORCLUSCluster> |
ORCLUS.initialSeeds(Relation<V> database,
int k)
Initializes the list of seeds wit a random sample of size k. |
private void |
ORCLUS.merge(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters,
int k_new,
int d_new,
IndefiniteProgress cprogress)
Reduces the number of seeds to k_new |
private ORCLUS.ProjectedEnergy |
ORCLUS.projectedEnergy(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c_i,
ORCLUS.ORCLUSCluster c_j,
int i,
int j,
int dim)
Computes the projected energy of the specified clusters. |
Clustering<Model> |
CASH.run(Database database,
Relation<ParameterizationFunction> relation)
Run CASH on the relation. |
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database. |
Clustering<Model> |
COPAC.run(Relation<V> relation)
Performs the COPAC algorithm on the given database. |
Clustering<CorrelationModel<V>> |
ERiC.run(Relation<V> relation)
Performs the ERiC algorithm on the given database. |
private Matrix |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dim,
CASHInterval interval,
ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model. |
private LinearEquationSystem |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dimensionality,
DBIDs ids)
Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model. |
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result. |
private ORCLUS.ORCLUSCluster |
ORCLUS.union(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c1,
ORCLUS.ORCLUSCluster c2,
int dim)
Returns the union of the two specified clusters. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash declared as Relation | |
---|---|
private Relation<ParameterizationFunction> |
CASHIntervalSplit.database
The database storing the parameterization functions. |
Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash with parameters of type Relation | |
---|---|
CASHIntervalSplit(Relation<ParameterizationFunction> database,
int minPts)
Initializes the logger and sets the debug status to the given value. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type Relation | |
---|---|
private Map<DBID,PROCLUS.PROCLUSCluster> |
PROCLUS.assignPoints(Map<DBID,Set<Integer>> dimensions,
Relation<V> database)
Assigns the objects to the clusters. |
private double |
PROCLUS.avgDistance(V centroid,
DBIDs objectIDs,
Relation<V> database,
int dimension)
Computes the average distance of the objects to the centroid along the specified dimension. |
private void |
DiSH.buildHierarchy(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
List<Cluster<SubspaceModel<V>>> clusters,
int dimensionality)
Builds the cluster hierarchy. |
private void |
DiSH.checkClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap,
int minpts)
Removes the clusters with size < minpts from the cluster map and adds them to their parents. |
private Clustering<SubspaceModel<V>> |
DiSH.computeClusters(Relation<V> database,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder,
DiSHDistanceFunction.Instance<V> distFunc)
Computes the hierarchical clusters according to the cluster order. |
private double |
PROCLUS.evaluateClusters(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
Map<DBID,Set<Integer>> dimensions,
Relation<V> database)
Evaluates the quality of the clusters. |
private Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> |
DiSH.extractClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder)
Extracts the clusters from the cluster order. |
private List<PROCLUS.PROCLUSCluster> |
PROCLUS.finalAssignment(List<Pair<V,Set<Integer>>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters. |
private List<CLIQUESubspace<V>> |
CLIQUE.findDenseSubspaceCandidates(Relation<V> database,
List<CLIQUESubspace<V>> denseSubspaces)
Determines the k -dimensional dense subspace candidates from the
specified (k-1) -dimensional dense subspaces. |
private List<CLIQUESubspace<V>> |
CLIQUE.findDenseSubspaces(Relation<V> database,
List<CLIQUESubspace<V>> denseSubspaces)
Determines the k -dimensional dense subspaces and performs a pruning
if this option is chosen. |
private Map<DBID,Set<Integer>> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the specified medoid set. |
private List<Pair<V,Set<Integer>>> |
PROCLUS.findDimensions(List<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each cluster centroid. |
private List<CLIQUESubspace<V>> |
CLIQUE.findOneDimensionalDenseSubspaceCandidates(Relation<V> database)
Determines the one-dimensional dense subspace candidates by making a pass over the database. |
private List<CLIQUESubspace<V>> |
CLIQUE.findOneDimensionalDenseSubspaces(Relation<V> database)
Determines the one dimensional dense subspaces and performs a pruning if this option is chosen. |
private Pair<BitSet,ArrayModifiableDBIDs> |
DiSH.findParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Pair<BitSet,ArrayModifiableDBIDs> child,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns the parent of the specified cluster |
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i. |
private Collection<CLIQUEUnit<V>> |
CLIQUE.initOneDimensionalUnits(Relation<V> database)
Initializes and returns the one dimensional units. |
private boolean |
DiSH.isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
List<Cluster<SubspaceModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of the children clusters. |
Clustering<SubspaceModel<V>> |
DiSH.run(Database database,
Relation<V> relation)
Performs the DiSH algorithm on the given database. |
Clustering<Model> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database. |
Clustering<SubspaceModel<V>> |
SUBCLU.run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database. |
Clustering<SubspaceModel<V>> |
CLIQUE.run(Relation<V> relation)
Performs the CLIQUE algorithm on the given database. |
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace<V> subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the given subspace. |
private List<Cluster<SubspaceModel<V>>> |
DiSH.sortClusters(Relation<V> database,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial with parameters of type Relation | |
---|---|
private HashMap<String,ModifiableDBIDs> |
ByLabelClustering.multipleAssignment(Relation<?> data)
Assigns the objects of the database to multiple clusters according to their labels. |
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation)
|
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm. |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm. |
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation)
|
private HashMap<String,ModifiableDBIDs> |
ByLabelClustering.singleAssignment(Relation<?> data)
Assigns the objects of the database to single clusters according to their labels. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier that implement Relation | |
---|---|
protected static class |
SOD.SODProxyScoreResult
Proxy class that converts a model result to an actual SOD score result. |
Fields in de.lmu.ifi.dbs.elki.algorithm.outlier declared as Relation | |
---|---|
(package private) Relation<SOD.SODModel<?>> |
SOD.SODProxyScoreResult.models
Model result this is a proxy for. |
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type Relation | |
---|---|
protected ArrayList<ArrayList<DBIDs>> |
AbstractAggarwalYuOutlier.buildRanges(Relation<V> database)
Grid discretization of the data: Each attribute of data is divided into phi equi-depth ranges. |
private PriorityQueue<FCPair<Double,DBID>> |
ABOD.calcDistsandNN(Relation<V> data,
KernelMatrix kernelMatrix,
int sampleSize,
DBID aKey,
HashMap<DBID,Double> dists)
|
private PriorityQueue<FCPair<Double,DBID>> |
ABOD.calcDistsandRNDSample(Relation<V> data,
KernelMatrix kernelMatrix,
int sampleSize,
DBID aKey,
HashMap<DBID,Double> dists)
|
protected List<DistanceResultPair<D>> |
ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
Computes for each object the distance to one reference point. |
private void |
ABOD.generateExplanation(Relation<V> data,
DBID key,
LinkedList<DBID> expList)
|
void |
ABOD.getExplanations(Relation<V> data)
Get explanations for points in the database. |
OutlierResult |
ABOD.getFastRanking(Relation<V> relation,
int k,
int sampleSize)
Main part of the algorithm. |
private KNNList<DoubleDistance> |
SOD.getKNN(Relation<V> database,
SimilarityQuery<V,IntegerDistance> snnInstance,
DBID queryObject)
Provides the k nearest neighbors in terms of the shared nearest neighbor distance. |
private Pair<Pair<KNNQuery<O,D>,KNNQuery<O,D>>,Pair<RKNNQuery<O,D>,RKNNQuery<O,D>>> |
OnlineLOF.getKNNAndRkNNQueries(Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm. |
protected Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm. |
private Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
LOF.getKNNQueries(Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm. |
OutlierResult |
ABOD.getRanking(Relation<V> relation,
int k)
Main part of the algorithm. |
private double |
GaussianUniformMixture.loglikelihoodNormal(DBIDs objids,
Relation<V> database)
Computes the loglikelihood of all normal objects. |
OutlierResult |
KNNOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part. |
OutlierResult |
LoOP.run(Database database,
Relation<O> relation)
Performs the LoOP algorithm on the given database. |
OutlierResult |
AbstractDBOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part. |
OutlierResult |
OPTICSOF.run(Database database,
Relation<O> relation)
Perform OPTICS-based outlier detection. |
OutlierResult |
LDOF.run(Database database,
Relation<O> relation)
|
OutlierResult |
KNNWeightOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part. |
OutlierResult |
ABOD.run(Database database,
Relation<V> relation)
Run ABOD on the data set |
OutlierResult |
EMOutlier.run(Database database,
Relation<V> relation)
Runs the algorithm in the timed evaluation part. |
OutlierResult |
AggarwalYuEvolutionary.run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database. |
OutlierResult |
OnlineLOF.run(Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by calling #doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
the preprocessors. |
OutlierResult |
LOF.run(Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by calling #doRunInTime(Database) . |
OutlierResult |
GaussianUniformMixture.run(Relation<V> relation)
|
OutlierResult |
ReferenceBasedOutlierDetection.run(Relation<V> relation)
Run the algorithm on the given relation. |
OutlierResult |
GaussianModel.run(Relation<V> relation)
|
OutlierResult |
AggarwalYuNaive.run(Relation<V> relation)
Run the algorithm on the given relation. |
OutlierResult |
SOD.run(Relation<V> relation)
Performs the SOD algorithm on the given database. |
Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type Relation | |
---|---|
AggarwalYuEvolutionary.EvolutionarySearch(Relation<V> database,
ArrayList<ArrayList<DBIDs>> ranges,
int m,
Long seed)
Constructor. |
|
SOD.SODModel(Relation<O> database,
DBIDs neighborhood,
double alpha,
O queryObject)
Initialize SOD Model |
|
SOD.SODProxyScoreResult(Relation<SOD.SODModel<?>> models,
DBIDs dbids)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.meta with parameters of type Relation | |
---|---|
OutlierResult |
ExternalDoubleOutlierScore.run(Database database,
Relation<?> relation)
Run the algorithm. |
OutlierResult |
FeatureBagging.run(Relation<NumberVector<?,?>> relation)
Run the algorithm on a data set. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with parameters of type Relation | |
---|---|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation)
|
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation)
|
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method |
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method |
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm |
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method |
OutlierResult |
CTLuMeanMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
|
OutlierResult |
CTLuMeanMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
|
OutlierResult |
CTLuMedianMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
Run the algorithm |
OutlierResult |
CTLuMedianMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
Run the algorithm |
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run the algorithm |
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run the algorithm |
private Pair<DBID,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run a single iteration of the GLS-SOD modeling step |
private Pair<DBID,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run a single iteration of the GLS-SOD modeling step |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood with parameters of type Relation | |
---|---|
private DataStore<DBIDs> |
ExtendedNeighborhood.Factory.extendNeighborhood(Relation<? extends O> database)
Method to load the external neighbors. |
NeighborSetPredicate |
ExternalNeighborhood.Factory.instantiate(Relation<?> database)
|
NeighborSetPredicate |
NeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
Instantiation method. |
NeighborSetPredicate |
PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Relation<? extends O> relation)
|
NeighborSetPredicate |
ExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database)
|
private DataStore<DBIDs> |
ExternalNeighborhood.Factory.loadNeighbors(Relation<?> database)
Method to load the external neighbors. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted with parameters of type Relation | |
---|---|
UnweightedNeighborhoodAdapter |
UnweightedNeighborhoodAdapter.Factory.instantiate(Relation<? extends O> relation)
|
LinearWeightedExtendedNeighborhood |
LinearWeightedExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database)
|
WeightedNeighborSetPredicate |
WeightedNeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
Instantiation method. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial with parameters of type Relation | |
---|---|
OutlierResult |
TrivialNoOutlier.run(Relation<?> relation)
Run the actual algorithm. |
OutlierResult |
ByLabelOutlier.run(Relation<?> relation)
Run the algorithm |
OutlierResult |
TrivialAllOutlier.run(Relation<?> relation)
Run the actual algorithm. |
Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.statistics |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.statistics with parameters of type Relation | |
---|---|
private DoubleMinMax |
DistanceStatisticsWithClasses.exactMinMax(Relation<O> database,
DistanceQuery<O,D> distFunc)
|
HistogramResult<DoubleVector> |
RankingQualityHistogram.run(Database database,
Relation<O> relation)
|
private DoubleMinMax |
DistanceStatisticsWithClasses.sampleMinMax(Relation<O> database,
DistanceQuery<O,D> distFunc)
|
Uses of Relation in de.lmu.ifi.dbs.elki.application.visualization |
---|
Fields in de.lmu.ifi.dbs.elki.application.visualization declared as Relation | |
---|---|
protected Relation<? extends O> |
KNNExplorer.ExplorerWindow.data
|
protected Relation<String> |
KNNExplorer.ExplorerWindow.labelRep
The label representation |
Uses of Relation in de.lmu.ifi.dbs.elki.data.model |
---|
Fields in de.lmu.ifi.dbs.elki.data.model declared as Relation | |
---|---|
private Relation<V> |
Bicluster.database
The database this bicluster is defined for. |
Methods in de.lmu.ifi.dbs.elki.data.model that return Relation | |
---|---|
Relation<V> |
Bicluster.getDatabase()
Getter to retrieve the database |
Constructors in de.lmu.ifi.dbs.elki.data.model with parameters of type Relation | |
---|---|
Bicluster(ArrayDBIDs rowIDs,
int[] colIDs,
Relation<V> database)
Defines a new bicluster for given parameters. |
|
Bicluster(int[] rowIDs,
int[] colIDs,
Relation<V> database)
Deprecated. Use DBIDs, not integers! |
|
BiclusterWithInverted(ArrayDBIDs rowIDs,
int[] colIDs,
Relation<V> database)
|
|
BiclusterWithInverted(int[] rowIDs,
int[] colIDs,
Relation<V> database)
Deprecated. Use DBIDs, not integer indexes! |
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix. |
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid,
NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and number format. |
Uses of Relation in de.lmu.ifi.dbs.elki.database |
---|
Fields in de.lmu.ifi.dbs.elki.database with type parameters of type Relation | |
---|---|
protected List<Relation<?>> |
AbstractDatabase.relations
The relations we manage. |
Methods in de.lmu.ifi.dbs.elki.database that return Relation | ||
---|---|---|
private Relation<?> |
StaticArrayDatabase.addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta. |
|
private Relation<?> |
HashmapDatabase.addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta. |
|
protected Relation<?>[] |
StaticArrayDatabase.alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding new database columns when needed. |
|
protected Relation<?>[] |
HashmapDatabase.alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding new database columns when needed. |
|
|
AbstractDatabase.getRelation(TypeInformation restriction,
Object... hints)
|
|
|
Database.getRelation(TypeInformation restriction,
Object... hints)
Get an object representation. |
Methods in de.lmu.ifi.dbs.elki.database that return types with arguments of type Relation | |
---|---|
Collection<Relation<?>> |
AbstractDatabase.getRelations()
|
Collection<Relation<?>> |
Database.getRelations()
Get all relations of a database. |
Methods in de.lmu.ifi.dbs.elki.database with parameters of type Relation | ||
---|---|---|
void |
ProxyDatabase.addRelation(Relation<?> relation)
Add a new representation. |
|
|
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
|
|
|
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get the distance query for a particular distance function. |
|
static
|
QueryUtil.getKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function. |
|
static
|
QueryUtil.getRangeQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a range query object for the given distance function. |
|
static
|
QueryUtil.getRKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a rKNN query object for the given distance function. |
|
|
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints)
|
|
|
Database.getSimilarityQuery(Relation<O> relation,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints)
Get the similarity query for a particular similarity function. |
Constructors in de.lmu.ifi.dbs.elki.database with parameters of type Relation | |
---|---|
ProxyDatabase(DBIDs ids,
Relation<?>... relations)
Constructor. |
Constructor parameters in de.lmu.ifi.dbs.elki.database with type arguments of type Relation | |
---|---|
ProxyDatabase(DBIDs ids,
Iterable<Relation<?>> relations)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.database.query |
---|
Fields in de.lmu.ifi.dbs.elki.database.query declared as Relation | |
---|---|
protected Relation<? extends O> |
AbstractDataBasedQuery.relation
The data to use for this query |
Methods in de.lmu.ifi.dbs.elki.database.query that return Relation | |
---|---|
Relation<? extends O> |
AbstractDataBasedQuery.getRelation()
Give access to the underlying data query. |
Constructors in de.lmu.ifi.dbs.elki.database.query with parameters of type Relation | |
---|---|
AbstractDataBasedQuery(Relation<? extends O> relation)
Database this query works on. |
Uses of Relation in de.lmu.ifi.dbs.elki.database.query.distance |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.distance that return Relation | |
---|---|
Relation<? extends O> |
DistanceQuery.getRelation()
Access the underlying data query. |
Constructors in de.lmu.ifi.dbs.elki.database.query.distance with parameters of type Relation | |
---|---|
AbstractDatabaseDistanceQuery(Relation<? extends O> relation)
Constructor. |
|
AbstractDistanceQuery(Relation<? extends O> relation)
Constructor. |
|
DBIDDistanceQuery(Relation<DBID> relation,
DBIDDistanceFunction<D> distanceFunction)
Constructor. |
|
PrimitiveDistanceQuery(Relation<? extends O> relation,
PrimitiveDistanceFunction<? super O,D> distanceFunction)
Constructor. |
|
PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
PrimitiveDistanceFunction<? super O,D> distanceFunction,
PrimitiveSimilarityFunction<? super O,D> similarityFunction)
Constructor. |
|
SpatialPrimitiveDistanceQuery(Relation<? extends V> relation,
SpatialPrimitiveDistanceFunction<? super V,D> distanceFunction)
|
Uses of Relation in de.lmu.ifi.dbs.elki.database.query.knn |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.knn that return Relation | |
---|---|
Relation<? extends O> |
KNNQuery.getRelation()
Access the underlying data query. |
Constructors in de.lmu.ifi.dbs.elki.database.query.knn with parameters of type Relation | |
---|---|
PreprocessorKNNQuery(Relation<O> database,
MaterializeKNNPreprocessor.Factory<O,D> preprocessor)
Constructor. |
|
PreprocessorKNNQuery(Relation<O> database,
MaterializeKNNPreprocessor<O,D> preprocessor)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.database.query.range |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.range that return Relation | |
---|---|
Relation<? extends O> |
RangeQuery.getRelation()
Access the underlying data query. |
Uses of Relation in de.lmu.ifi.dbs.elki.database.query.rknn |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.rknn that return Relation | |
---|---|
Relation<? extends O> |
RKNNQuery.getRelation()
Access the underlying data query. |
Constructors in de.lmu.ifi.dbs.elki.database.query.rknn with parameters of type Relation | |
---|---|
PreprocessorRKNNQuery(Relation<O> database,
MaterializeKNNAndRKNNPreprocessor.Factory<O,D> preprocessor)
Constructor. |
|
PreprocessorRKNNQuery(Relation<O> database,
MaterializeKNNAndRKNNPreprocessor<O,D> preprocessor)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.database.query.similarity |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.similarity that return Relation | |
---|---|
Relation<? extends O> |
SimilarityQuery.getRelation()
Access the underlying data query. |
Constructors in de.lmu.ifi.dbs.elki.database.query.similarity with parameters of type Relation | |
---|---|
AbstractDBIDSimilarityQuery(Relation<? extends O> relation)
Constructor. |
|
AbstractSimilarityQuery(Relation<? extends O> relation)
Constructor. |
|
PrimitiveSimilarityQuery(Relation<? extends O> relation,
PrimitiveSimilarityFunction<? super O,D> similarityFunction)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.database.relation |
---|
Classes in de.lmu.ifi.dbs.elki.database.relation that implement Relation | |
---|---|
class |
ConvertToStringView
Representation adapter that uses toString() to produce a string representation. |
class |
DBIDView
Pseudo-representation that is the object ID itself. |
class |
MaterializedRelation<O>
Represents a single representation. |
class |
ProxyView<O>
A virtual partitioning of the database. |
Fields in de.lmu.ifi.dbs.elki.database.relation declared as Relation | |
---|---|
(package private) Relation<?> |
ConvertToStringView.existing
The database we use |
private Relation<O> |
ProxyView.inner
The wrapped representation where we get the IDs from. |
Methods in de.lmu.ifi.dbs.elki.database.relation with parameters of type Relation | ||
---|---|---|
static
|
ProxyView.wrap(Database database,
DBIDs idview,
Relation<O> inner)
Constructor-like static method. |
Constructors in de.lmu.ifi.dbs.elki.database.relation with parameters of type Relation | |
---|---|
ConvertToStringView(Relation<?> existing)
Constructor. |
|
ProxyView(Database database,
DBIDs idview,
Relation<O> inner)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type Relation | ||
---|---|---|
|
AbstractDBIDDistanceFunction.instantiate(Relation<O> database)
|
|
|
AbstractCosineDistanceFunction.instantiate(Relation<T> relation)
|
|
|
SquaredEuclideanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
ManhattanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
EuclideanDistanceFunction.instantiate(Relation<T> relation)
|
|
|
MaximumDistanceFunction.instantiate(Relation<T> relation)
|
|
|
MinimumDistanceFunction.instantiate(Relation<T> relation)
|
|
|
DistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query. |
|
|
FilteredLocalPCABasedDistanceFunction.instantiate(Relation<T> database)
Instantiate with a database to get the actual distance query. |
|
|
MinKDistance.instantiate(Relation<T> relation)
|
|
|
SharedNearestNeighborJaccardDistanceFunction.instantiate(Relation<T> database)
|
|
|
AbstractPrimitiveDistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query. |
|
|
SpatialPrimitiveDistanceFunction.instantiate(Relation<T> relation)
|
|
|
LocallyWeightedDistanceFunction.instantiate(Relation<T> database)
|
Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type Relation | |
---|---|
AbstractDatabaseDistanceFunction.Instance(Relation<O> database,
DistanceFunction<? super O,D> parent)
Constructor. |
|
AbstractIndexBasedDistanceFunction.Instance(Relation<O> database,
I index,
F parent)
Constructor. |
|
LocallyWeightedDistanceFunction.Instance(Relation<V> database,
LocalProjectionIndex<V,?> index,
LocallyWeightedDistanceFunction<? super V> distanceFunction)
Constructor. |
|
MinKDistance.Instance(Relation<T> relation,
int k,
DistanceFunction<? super O,D> parentDistance)
Constructor. |
|
SharedNearestNeighborJaccardDistanceFunction.Instance(Relation<T> database,
SharedNearestNeighborIndex<T> preprocessor,
SharedNearestNeighborJaccardDistanceFunction<T> parent)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with parameters of type Relation | ||
---|---|---|
abstract
|
AbstractSimilarityAdapter.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterLn.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterLinear.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterArccos.instantiate(Relation<T> database)
|
Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with parameters of type Relation | |
---|---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterArccos.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
|
SimilarityAdapterLn.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram with parameters of type Relation | ||
---|---|---|
|
HistogramIntersectionDistanceFunction.instantiate(Relation<T> relation)
|
Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with parameters of type Relation | ||
---|---|---|
|
PCABasedCorrelationDistanceFunction.instantiate(Relation<T> database)
|
|
|
ERiCDistanceFunction.instantiate(Relation<T> database)
|
Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with parameters of type Relation | |
---|---|
ERiCDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
ERiCDistanceFunction parent,
double delta,
double tau)
Constructor. |
|
PCABasedCorrelationDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
double delta,
PCABasedCorrelationDistanceFunction distanceFunction)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace with parameters of type Relation | ||
---|---|---|
|
DimensionsSelectingEuclideanDistanceFunction.instantiate(Relation<T> database)
|
|
|
DiSHDistanceFunction.instantiate(Relation<T> database)
|
|
|
DimensionSelectingDistanceFunction.instantiate(Relation<T> database)
|
|
|
HiSCDistanceFunction.instantiate(Relation<T> database)
|
|
|
SubspaceDistanceFunction.instantiate(Relation<V> database)
|
Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace with parameters of type Relation | |
---|---|
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance(Relation<V> database,
P preprocessor,
double epsilon,
AbstractPreferenceVectorBasedCorrelationDistanceFunction<? super V,?> distanceFunction)
Constructor. |
|
DiSHDistanceFunction.Instance(Relation<V> database,
DiSHPreferenceVectorIndex<V> index,
double epsilon,
DiSHDistanceFunction distanceFunction)
Constructor. |
|
HiSCDistanceFunction.Instance(Relation<V> database,
HiSCPreferenceVectorIndex<V> index,
double epsilon,
HiSCDistanceFunction<? super V> distanceFunction)
Constructor. |
|
SubspaceDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
SubspaceDistanceFunction distanceFunction)
|
Uses of Relation in de.lmu.ifi.dbs.elki.distance.similarityfunction |
---|
Fields in de.lmu.ifi.dbs.elki.distance.similarityfunction declared as Relation | |
---|---|
protected Relation<? extends DBID> |
AbstractDBIDSimilarityFunction.database
The database we work on |
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction with parameters of type Relation | ||
---|---|---|
abstract
|
AbstractIndexBasedSimilarityFunction.instantiate(Relation<T> database)
|
|
|
SimilarityFunction.instantiate(Relation<T> relation)
Instantiate with a representation to get the actual similarity query. |
|
|
IndexBasedSimilarityFunction.instantiate(Relation<T> database)
Preprocess the database to get the actual distance function. |
|
|
AbstractPrimitiveSimilarityFunction.instantiate(Relation<T> relation)
|
|
|
FractionalSharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database)
|
|
|
SharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database)
|
Constructors in de.lmu.ifi.dbs.elki.distance.similarityfunction with parameters of type Relation | |
---|---|
AbstractDBIDSimilarityFunction(Relation<? extends DBID> database)
Constructor. |
|
AbstractIndexBasedSimilarityFunction.Instance(Relation<O> database,
I index)
Constructor. |
|
FractionalSharedNearestNeighborSimilarityFunction.Instance(Relation<T> database,
SharedNearestNeighborIndex<T> preprocessor)
Constructor. |
|
SharedNearestNeighborSimilarityFunction.Instance(Relation<O> database,
SharedNearestNeighborIndex<O> preprocessor)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
---|
Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type Relation | ||
---|---|---|
|
FooKernelFunction.instantiate(Relation<T> database)
|
|
|
PolynomialKernelFunction.instantiate(Relation<T> database)
|
|
|
LinearKernelFunction.instantiate(Relation<T> database)
|
Constructors in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type Relation | |
---|---|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database)
Deprecated. ID mapping is not reliable! |
|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database,
ArrayDBIDs ids)
Provides a new kernel matrix. |
Uses of Relation in de.lmu.ifi.dbs.elki.evaluation.roc |
---|
Fields in de.lmu.ifi.dbs.elki.evaluation.roc declared as Relation | |
---|---|
private Relation<Double> |
ROC.OutlierScoreAdapter.scores
Outlier score |
Uses of Relation in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
---|
Fields in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix declared as Relation | |
---|---|
(package private) Relation<?> |
ComputeSimilarityMatrixImage.SimilarityMatrix.relation
The database |
Methods in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix that return Relation | |
---|---|
Relation<?> |
ComputeSimilarityMatrixImage.SimilarityMatrix.getRelation()
Get the relation |
Methods in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with parameters of type Relation | |
---|---|
private ComputeSimilarityMatrixImage.SimilarityMatrix |
ComputeSimilarityMatrixImage.computeSimilarityMatrixImage(Relation<O> relation,
Iterator<DBID> iter)
Compute the actual similarity image. |
Constructors in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with parameters of type Relation | |
---|---|
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img,
Relation<?> relation,
ArrayDBIDs ids)
Constructor |
Uses of Relation in de.lmu.ifi.dbs.elki.index |
---|
Fields in de.lmu.ifi.dbs.elki.index declared as Relation | |
---|---|
protected Relation<O> |
AbstractIndex.relation
The representation we are bound to. |
Methods in de.lmu.ifi.dbs.elki.index with parameters of type Relation | |
---|---|
I |
IndexFactory.instantiate(Relation<V> relation)
Sets the database in the distance function of this index (if existing). |
Constructors in de.lmu.ifi.dbs.elki.index with parameters of type Relation | |
---|---|
AbstractIndex(Relation<O> relation)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed with parameters of type Relation | |
---|---|
I |
LocalProjectionIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database. |
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed with parameters of type Relation | |
---|---|
AbstractPreprocessorIndex(Relation<O> relation)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.knn |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type Relation | |
---|---|
private MetricalIndexTree<O,D,N,E> |
MetricalIndexApproximationMaterializeKNNPreprocessor.getMetricalIndex(Relation<O> relation)
Do some (limited) type checking, then cast the database into a spatial database. |
SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?,?>,D,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?,?>> relation)
|
PartitionApproximationMaterializeKNNPreprocessor<O,D> |
PartitionApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
|
MetricalIndexApproximationMaterializeKNNPreprocessor<O,D,N,E> |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
|
MaterializeKNNPreprocessor<O,D> |
MaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
|
MaterializeKNNAndRKNNPreprocessor<O,D> |
MaterializeKNNAndRKNNPreprocessor.Factory.instantiate(Relation<O> relation)
|
abstract AbstractMaterializeKNNPreprocessor<O,D> |
AbstractMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type Relation | |
---|---|
AbstractMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor. |
|
MaterializeKNNAndRKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor. |
|
MaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor with preprocessing step. |
|
MaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k,
boolean preprocess)
Constructor. |
|
MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor |
|
PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k,
int partitions)
Constructor |
|
SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor |
Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type Relation | |
---|---|
abstract I |
AbstractFilteredPCAIndex.Factory.instantiate(Relation<NV> relation)
|
I |
FilteredLocalPCAIndex.Factory.instantiate(Relation<NV> relation)
Instantiate the index for a given database. |
KNNQueryFilteredPCAIndex<V> |
KNNQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation)
|
RangeQueryFilteredPCAIndex<V> |
RangeQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type Relation | |
---|---|
AbstractFilteredPCAIndex(Relation<NV> relation,
PCAFilteredRunner<NV> pca)
Constructor. |
|
KNNQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
KNNQuery<NV,DoubleDistance> knnQuery,
int k)
Constructor. |
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.preference |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.preference with parameters of type Relation | |
---|---|
private BitSet |
HiSCPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
DBID id,
DBIDs neighborIDs,
StringBuffer msg)
Determines the preference vector according to the specified neighbor ids. |
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuffer msg)
Determines the preference vector according to the specified neighbor ids. |
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuffer msg)
Determines the preference vector with the apriori strategy. |
private RangeQuery<V,DoubleDistance>[] |
DiSHPreferenceVectorIndex.initRangeQueries(Relation<V> relation,
int dimensionality)
Initializes the dimension selecting distancefunctions to determine the preference vectors. |
DiSHPreferenceVectorIndex<V> |
DiSHPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
|
abstract I |
AbstractPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
|
I |
PreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database. |
HiSCPreferenceVectorIndex<V> |
HiSCPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.preference with parameters of type Relation | |
---|---|
AbstractPreferenceVectorIndex(Relation<NV> relation)
Constructor. |
|
DiSHPreferenceVectorIndex(Relation<V> relation,
DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor. |
|
HiSCPreferenceVectorIndex(Relation<V> relation,
double alpha,
int k)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.snn |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.snn with parameters of type Relation | |
---|---|
I |
SharedNearestNeighborIndex.Factory.instantiate(Relation<O> database)
Instantiate the index for a given database. |
SharedNearestNeighborPreprocessor<O,D> |
SharedNearestNeighborPreprocessor.Factory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.snn with parameters of type Relation | |
---|---|
SharedNearestNeighborPreprocessor(Relation<O> relation,
int numberOfNeighbors,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type Relation | |
---|---|
protected abstract P |
AbstractSubspaceProjectionIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<NV> relation)
This method implements the type of variance analysis to be computed for a given point. |
protected SubspaceProjectionResult |
PreDeConSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database)
|
protected PCAFilteredResult |
FourCSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database)
|
I |
SubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation)
Instantiate the index for a given database. |
abstract I |
AbstractSubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation)
|
PreDeConSubspaceIndex<V,D> |
PreDeConSubspaceIndex.Factory.instantiate(Relation<V> relation)
|
FourCSubspaceIndex<V,D> |
FourCSubspaceIndex.Factory.instantiate(Relation<V> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type Relation | |
---|---|
AbstractSubspaceProjectionIndex(Relation<NV> relation,
D epsilon,
DistanceFunction<NV,D> rangeQueryDistanceFunction,
int minpts)
Constructor. |
|
FourCSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
PCAFilteredRunner<V> pca)
Full constructor. |
|
PreDeConSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
double delta)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree with parameters of type Relation | |
---|---|
abstract I |
TreeIndexFactory.instantiate(Relation<O> relation)
|
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp declared as Relation | |
---|---|
private Relation<O> |
MkAppTreeIndex.relation
The relation indexed |
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation | |
---|---|
MkAppTreeIndex<O,D> |
MkAppTreeFactory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation | |
---|---|
MkAppTreeIndex(Relation<O> relation,
PageFile<MkAppTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max,
int p,
boolean log)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop declared as Relation | |
---|---|
private Relation<O> |
MkCoPTreeIndex.relation
Relation indexed |
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation | |
---|---|
MkCoPTreeIndex<O,D> |
MkCopTreeFactory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation | |
---|---|
MkCoPTreeIndex(Relation<O> relation,
PageFile<MkCoPTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax declared as Relation | |
---|---|
private Relation<O> |
MkMaxTreeIndex.relation
|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation | |
---|---|
MkMaxTreeIndex<O,D> |
MkMaxTreeFactory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation | |
---|---|
MkMaxTreeIndex(Relation<O> relation,
PageFile<MkMaxTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab declared as Relation | |
---|---|
private Relation<O> |
MkTabTreeIndex.relation
The relation indexed. |
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation | |
---|---|
MkTabTreeIndex<O,D> |
MkTabTreeFactory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation | |
---|---|
MkTabTreeIndex(Relation<O> relation,
PageFile<MkTabTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree declared as Relation | |
---|---|
private Relation<O> |
MTreeIndex.relation
The relation indexed. |
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation | |
---|---|
MTreeIndex<O,D> |
MTreeFactory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation | |
---|---|
MTreeIndex(Relation<O> relation,
PageFile<MTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu declared as Relation | |
---|---|
private Relation<O> |
DeLiCluTreeIndex.relation
The relation we index |
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation | |
---|---|
DeLiCluTreeIndex<O> |
DeLiCluTreeFactory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation | |
---|---|
DeLiCluTreeIndex(Relation<O> relation,
PageFile<DeLiCluNode> pagefile,
BulkSplit bulkSplitter,
InsertionStrategy insertionStrategy)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar declared as Relation | |
---|---|
private Relation<O> |
RStarTreeIndex.relation
Relation |
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation | |
---|---|
RStarTreeIndex<O> |
RStarTreeFactory.instantiate(Relation<O> relation)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation | |
---|---|
RStarTreeIndex(Relation<O> relation,
PageFile<RStarTreeNode> pagefile,
BulkSplit bulkSplitter,
InsertionStrategy insertionStrategy)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.math.linearalgebra |
---|
Methods in de.lmu.ifi.dbs.elki.math.linearalgebra with parameters of type Relation | ||
---|---|---|
|
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
Get the mean as vector. |
|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?,?>> relation)
Static Constructor from a relation. |
|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static Constructor from a relation. |
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?,?>> relation)
Static constructor from an existing relation. |
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation)
Static Constructor from a full relation. |
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static constructor from an existing relation. |
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static Constructor from a full relation. |
|
|
Centroid.toVector(Relation<? extends F> relation)
Get the data as vector |
Uses of Relation in de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
---|
Methods in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with parameters of type Relation | ||
---|---|---|
PCAResult |
PCARunner.processDatabase(Relation<? extends V> database)
Run PCA on the complete database |
|
Matrix |
AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
|
|
Matrix |
CovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database |
|
Matrix |
StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database |
|
Matrix |
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Weighted Covariance Matrix for a set of IDs. |
|
PCAResult |
PCARunner.processIds(DBIDs ids,
Relation<? extends V> database)
Run PCA on a collection of database IDs |
|
abstract Matrix |
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
|
|
Matrix |
CovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs |
|
Matrix |
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs |
|
PCAFilteredResult |
PCAFilteredRunner.processIds(DBIDs ids,
Relation<? extends V> database)
Run PCA on a collection of database IDs |
|
|
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection |
|
|
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection |
|
|
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
|
|
|
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds |
|
|
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds |
|
|
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
|
|
|
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds |
Uses of Relation in de.lmu.ifi.dbs.elki.math.spacefillingcurves |
---|
Constructors in de.lmu.ifi.dbs.elki.math.spacefillingcurves with parameters of type Relation | |
---|---|
ZCurve.Transformer(Relation<? extends NumberVector<?,?>> relation,
DBIDs ids)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.result |
---|
Methods in de.lmu.ifi.dbs.elki.result that return types with arguments of type Relation | |
---|---|
static List<Relation<?>> |
ResultUtil.getRelations(Result r)
Collect all Annotation results from a Result |
Method parameters in de.lmu.ifi.dbs.elki.result with type arguments of type Relation | |
---|---|
private StringBuffer |
KMLOutputHandler.makeDescription(Collection<Relation<?>> relations,
DBID id)
Make an HTML description. |
Uses of Relation in de.lmu.ifi.dbs.elki.result.optics |
---|
Classes in de.lmu.ifi.dbs.elki.result.optics that implement Relation | |
---|---|
(package private) class |
ClusterOrderResult.PredecessorAdapter
Result containing the predecessor ID. |
(package private) class |
ClusterOrderResult.ReachabilityDistanceAdapter
Result containing the reachability distances. |
Uses of Relation in de.lmu.ifi.dbs.elki.result.outlier |
---|
Fields in de.lmu.ifi.dbs.elki.result.outlier declared as Relation | |
---|---|
protected Relation<Double> |
OrderingFromRelation.scores
Outlier scores. |
private Relation<Double> |
OutlierResult.scores
Outlier scores. |
Methods in de.lmu.ifi.dbs.elki.result.outlier that return Relation | |
---|---|
Relation<Double> |
OutlierResult.getScores()
Get the outlier scores association. |
Constructors in de.lmu.ifi.dbs.elki.result.outlier with parameters of type Relation | |
---|---|
OrderingFromRelation(Relation<Double> scores)
Ascending constructor. |
|
OrderingFromRelation(Relation<Double> scores,
boolean ascending)
Constructor for outlier orderings |
|
OutlierResult(OutlierScoreMeta meta,
Relation<Double> scores)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.result.textwriter |
---|
Method parameters in de.lmu.ifi.dbs.elki.result.textwriter with type arguments of type Relation | |
---|---|
private void |
TextWriter.printObject(TextWriterStream out,
Database db,
DBID objID,
List<Relation<?>> ra)
|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Cluster<?> clus,
List<Relation<?>> ra,
NamingScheme naming,
List<SettingsResult> sr)
|
private void |
TextWriter.writeOrderingResult(Database db,
StreamFactory streamOpener,
OrderingResult or,
List<Relation<?>> ra,
List<SettingsResult> sr)
|
Uses of Relation in de.lmu.ifi.dbs.elki.utilities |
---|
Fields in de.lmu.ifi.dbs.elki.utilities declared as Relation | |
---|---|
(package private) Relation<? extends O> |
DatabaseUtil.RelationObjectIterator.database
The database we use |
(package private) Relation<? extends O> |
DatabaseUtil.CollectionFromRelation.db
The database we query |
Methods in de.lmu.ifi.dbs.elki.utilities that return Relation | ||
---|---|---|
static Relation<String> |
DatabaseUtil.guessLabelRepresentation(Database database)
Guess a potentially label-like representation. |
|
static Relation<String> |
DatabaseUtil.guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation. |
|
static
|
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics. |
Methods in de.lmu.ifi.dbs.elki.utilities with parameters of type Relation | ||
---|---|---|
static
|
DatabaseUtil.assumeVectorField(Relation<V> relation)
Get the dimensionality of a database |
|
static
|
DatabaseUtil.centroid(Relation<? extends V> relation)
Returns the centroid as a NumberVector object of the specified database. |
|
static
|
DatabaseUtil.centroid(Relation<? extends V> relation,
DBIDs ids)
Returns the centroid as a NumberVector object of the specified objects stored in the given database. |
|
static
|
DatabaseUtil.centroid(Relation<? extends V> relation,
DBIDs ids,
BitSet dimensions)
Returns the centroid w.r.t. the dimensions specified by the given BitSet as a NumberVector object of the specified objects stored in the given database. |
|
static
|
DatabaseUtil.computeMinMax(Relation<NV> database)
Determines the minimum and maximum values in each dimension of all objects stored in the given database. |
|
static
|
DatabaseUtil.covarianceMatrix(Relation<? extends V> database,
DBIDs ids)
Determines the covariance matrix of the objects stored in the given database. |
|
static int |
DatabaseUtil.dimensionality(Relation<? extends FeatureVector<?,?>> relation)
Get the dimensionality of a database |
|
static
|
DatabaseUtil.exactMedian(Relation<V> relation,
DBIDs ids,
int dimension)
Returns the median of a data set in the given dimension. |
|
static
|
DatabaseUtil.getBaseObjectClassExpensive(Relation<O> database)
Do a full inspection of the database to find the base object class. |
|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Relation<? extends ClassLabel> database)
Retrieves all class labels within the database. |
|
static
|
DatabaseUtil.getColumnLabel(Relation<? extends V> rel,
int col)
Get the column name or produce a generic label "Column XY". |
|
static
|
DatabaseUtil.guessObjectClass(Relation<O> database)
Do a cheap guess at the databases object class. |
|
static
|
DatabaseUtil.quickMedian(Relation<V> relation,
ArrayDBIDs ids,
int dimension,
int numberOfSamples)
Returns the median of a data set in the given dimension by using a sampling method. |
|
static
|
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics. |
|
static double[] |
DatabaseUtil.variances(Relation<? extends NumberVector<?,?>> database,
NumberVector<?,?> centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored in the given database. |
|
static
|
DatabaseUtil.variances(Relation<V> database)
Determines the variances in each dimension of all objects stored in the given database. |
|
static
|
DatabaseUtil.variances(Relation<V> database,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored in the given database. |
Constructors in de.lmu.ifi.dbs.elki.utilities with parameters of type Relation | |
---|---|
DatabaseUtil.CollectionFromRelation(Relation<? extends O> db)
Constructor. |
|
DatabaseUtil.RelationObjectIterator(Iterator<DBID> iter,
Relation<? extends O> database)
Full Constructor. |
|
DatabaseUtil.RelationObjectIterator(Relation<? extends O> database)
Simplified constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.utilities.referencepoints |
---|
Methods in de.lmu.ifi.dbs.elki.utilities.referencepoints with parameters of type Relation | ||
---|---|---|
|
FullDatabaseReferencePoints.getReferencePoints(Relation<T> db)
|
|
|
ReferencePointsHeuristic.getReferencePoints(Relation<T> db)
Get the reference points for the given database. |
|
|
RandomSampleReferencePoints.getReferencePoints(Relation<T> db)
|
|
|
AxisBasedReferencePoints.getReferencePoints(Relation<T> db)
|
|
|
RandomGeneratedReferencePoints.getReferencePoints(Relation<T> db)
|
|
|
GridBasedReferencePoints.getReferencePoints(Relation<T> db)
|
|
|
StarBasedReferencePoints.getReferencePoints(Relation<T> db)
|
Uses of Relation in de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
---|
Methods in de.lmu.ifi.dbs.elki.utilities.scaling.outlier with parameters of type Relation | |
---|---|
private double[] |
SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a,
double b,
ArrayDBIDs ids,
BitSet t,
Relation<Double> scores)
M-Step using a modified Levenberg-Marquardt method. |
Uses of Relation in de.lmu.ifi.dbs.elki.visualization |
---|
Fields in de.lmu.ifi.dbs.elki.visualization declared as Relation | |
---|---|
(package private) Relation<?> |
VisualizationTask.relation
The main representation |
Methods in de.lmu.ifi.dbs.elki.visualization with type parameters of type Relation | ||
---|---|---|
|
VisualizationTask.getRelation()
|
Constructors in de.lmu.ifi.dbs.elki.visualization with parameters of type Relation | |
---|---|
VisualizationTask(String name,
Result result,
Relation<?> relation,
VisFactory factory)
Visualization task. |
|
VisualizationTask(String name,
VisualizerContext context,
Result result,
Relation<?> relation,
VisFactory factory,
Projection proj,
SVGPlot svgp,
double width,
double height)
Constructor |
Uses of Relation in de.lmu.ifi.dbs.elki.visualization.gui |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.gui declared as Relation | |
---|---|
(package private) Relation<ClassLabel> |
SelectionTableWindow.crep
Class label representation |
(package private) Relation<String> |
SelectionTableWindow.orep
Object label representation |
Uses of Relation in de.lmu.ifi.dbs.elki.visualization.projector |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.projector declared as Relation | |
---|---|
(package private) Relation<V> |
ScatterPlotProjector.rel
Relation we project |
(package private) Relation<V> |
HistogramProjector.rel
Relation we project |
Methods in de.lmu.ifi.dbs.elki.visualization.projector that return Relation | |
---|---|
Relation<V> |
ScatterPlotProjector.getRelation()
The relation we project. |
Relation<V> |
HistogramProjector.getRelation()
Get the relation we project. |
Constructors in de.lmu.ifi.dbs.elki.visualization.projector with parameters of type Relation | |
---|---|
HistogramProjector(Relation<V> rel,
int maxdim)
Constructor. |
|
ScatterPlotProjector(Relation<V> rel,
int maxdim)
Constructor. |
Uses of Relation in de.lmu.ifi.dbs.elki.visualization.scales |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.scales with parameters of type Relation | ||
---|---|---|
static
|
Scales.calcScales(Relation<O> db)
Compute a linear scale for each dimension. |
Uses of Relation in de.lmu.ifi.dbs.elki.visualization.visualizers |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.visualizers that return types with arguments of type Relation | |
---|---|
static Iterator<Relation<? extends NumberVector<?,?>>> |
VisualizerUtil.iterateVectorFieldRepresentations(Result result)
Filter for number vector field representations |
Uses of Relation in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d declared as Relation | |
---|---|
private Relation<NV> |
P1DHistogramVisualizer.relation
The database we visualize |
Uses of Relation in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d declared as Relation | |
---|---|
protected Relation<NV> |
P2DVisualization.rel
The representation we visualize |
protected Relation<PolygonsObject> |
PolygonVisualization.rep
The representation we visualize |
private Relation<? extends Number> |
TooltipScoreVisualization.result
Number value to visualize |
private Relation<?> |
TooltipStringVisualization.result
Number value to visualize |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |