Uses of Interface
de.lmu.ifi.dbs.elki.database.relation.Relation

Packages that use Relation
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash Helper classes for the CASH algorithm. 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.meta Meta outlier detection algorithms: external scores, score rescaling. 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial Spatial outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood Spatial outlier neighborhood classes 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted Weighted Neighborhood definitions. 
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial Trivial outlier detection algorithms: no outliers, all outliers, label outliers. 
de.lmu.ifi.dbs.elki.algorithm.statistics Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) 
de.lmu.ifi.dbs.elki.application.visualization Visualization applications in ELKI. 
de.lmu.ifi.dbs.elki.data.model Cluster models classes for various algorithms. 
de.lmu.ifi.dbs.elki.database ELKI database layer - loading, storing, indexing and accessing data 
de.lmu.ifi.dbs.elki.database.query Database queries - computing distances, neighbors, similarities - API and general documentation. 
de.lmu.ifi.dbs.elki.database.query.distance Prepared queries for distances. 
de.lmu.ifi.dbs.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries. 
de.lmu.ifi.dbs.elki.database.query.range Prepared queries for ε-range queries. 
de.lmu.ifi.dbs.elki.database.query.rknn Prepared queries for reverse k nearest neighbor (rkNN) queries. 
de.lmu.ifi.dbs.elki.database.query.similarity Prepared queries for similarity functions. 
de.lmu.ifi.dbs.elki.database.relation Relations, materialized and virtual (views). 
de.lmu.ifi.dbs.elki.distance.distancefunction Distance functions for use within ELKI. 
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter Distance functions deriving distances from e.g. similarity measures 
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace Distance functions based on subspaces. 
de.lmu.ifi.dbs.elki.distance.similarityfunction Similarity functions. 
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel Kernel functions. 
de.lmu.ifi.dbs.elki.evaluation.roc Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve) 
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix Render a distance matrix to visualize a clustering-distance-combination. 
de.lmu.ifi.dbs.elki.index Index structure implementations 
de.lmu.ifi.dbs.elki.index.preprocessed Index structure based on preprocessors 
de.lmu.ifi.dbs.elki.index.preprocessed.knn Indexes providing KNN and rKNN data. 
de.lmu.ifi.dbs.elki.index.preprocessed.localpca Index using a preprocessed local PCA. 
de.lmu.ifi.dbs.elki.index.preprocessed.preference Indexes storing preference vectors. 
de.lmu.ifi.dbs.elki.index.preprocessed.snn Indexes providing nearest neighbor sets 
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj Index using a preprocessed local subspaces. 
de.lmu.ifi.dbs.elki.index.tree Tree-based index structures 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp MkAppTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop MkCoPTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax MkMaxTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab MkTabTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree MTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu DeLiCluTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar RStarTree 
de.lmu.ifi.dbs.elki.math.linearalgebra Linear Algebra package provides classes and computational methods for operations on matrices. 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and Eigenvector processing. 
de.lmu.ifi.dbs.elki.math.spacefillingcurves Space filling curves. 
de.lmu.ifi.dbs.elki.result Result types, representation and handling 
de.lmu.ifi.dbs.elki.result.optics Result classes for OPTICS. 
de.lmu.ifi.dbs.elki.result.outlier Outlier result classes 
de.lmu.ifi.dbs.elki.result.textwriter Text serialization (CSV, Gnuplot, Console, ...) 
de.lmu.ifi.dbs.elki.utilities Utility and helper classes - commonly used data structures, output formatting, exceptions, ... 
de.lmu.ifi.dbs.elki.utilities.referencepoints Package containing strategies to obtain reference points Shared code for various algorithms that use reference points. 
de.lmu.ifi.dbs.elki.utilities.scaling.outlier Scaling of Outlier scores, that require a statistical analysis of the occurring values 
de.lmu.ifi.dbs.elki.visualization Visualization package of ELKI. 
de.lmu.ifi.dbs.elki.visualization.gui Package to provide a visualization GUI. 
de.lmu.ifi.dbs.elki.visualization.projector Projectors are responsible for finding appropriate projections for data relations. 
de.lmu.ifi.dbs.elki.visualization.scales Scales handling for plotting. 
de.lmu.ifi.dbs.elki.visualization.visualizers Visualizers for various results 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d Visualizers based on 1D projections. 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d Visualizers based on 2D projections. 
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm
 

Methods in de.lmu.ifi.dbs.elki.algorithm with parameters of type Relation
protected  BitSet[] APRIORI.frequentItemsets(Map<BitSet,Integer> support, BitSet[] candidates, Relation<BitVector> database)
          Returns the frequent BitSets out of the given BitSets with respect to the given database.
 CorrelationAnalysisSolution<V> DependencyDerivator.generateModel(Relation<V> db, DBIDs ids)
          Runs the pca on the given set of IDs.
 CorrelationAnalysisSolution<V> DependencyDerivator.generateModel(Relation<V> db, DBIDs ids, V centroidDV)
          Runs the pca on the given set of IDs and for the given centroid.
 AprioriResult APRIORI.run(Database database, Relation<BitVector> relation)
          Performs the APRIORI algorithm on the given database.
 Result DummyAlgorithm.run(Database database, Relation<O> relation)
          Run the algorithm.
 KNNDistanceOrderResult<D> KNNDistanceOrder.run(Database database, Relation<O> relation)
          Provides an order of the kNN-distances for all objects within the specified database.
 CollectionResult<CTriple<DBID,DBID,Double>> MaterializeDistances.run(Database database, Relation<O> relation)
          Iterates over all points in the database.
 DataStore<KNNList<D>> KNNJoin.run(Database database, Relation<V> relation)
          Joins in the given spatial database to each object its k-nearest neighbors.
 CorrelationAnalysisSolution<V> DependencyDerivator.run(Database database, Relation<V> relation)
          Computes quantitatively linear dependencies among the attributes of the given database based on a linear correlation PCA.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type Relation
protected  double EM.assignProbabilitiesToInstances(Relation<V> database, List<Double> normDistrFactor, List<V> means, List<Matrix> invCovMatr, List<Double> clusterWeights, WritableDataStore<double[]> probClusterIGivenX)
          Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.
private  Clustering<OPTICSModel> OPTICSXi.extractClusters(ClusterOrderResult<N> clusterOrderResult, Relation<?> relation, double ixi, int minpts)
          Extract clusters from a cluster order result.
private  DBID DeLiClu.getStartObject(Relation<NV> relation)
          Returns the id of the start object for the run method.
protected  List<V> EM.initialMeans(Relation<V> relation)
          Creates k random points distributed uniformly within the attribute ranges of the given database.
protected  List<V> KMeans.means(List<? extends ModifiableDBIDs> clusters, List<V> means, Relation<V> database)
          Returns the mean vectors of the given clusters in the given database.
 Clustering<OPTICSModel> OPTICSXi.run(Database database, Relation<?> relation)
           
 ClusterOrderResult<D> DeLiClu.run(Database database, Relation<NV> relation)
           
 ClusterOrderResult<D> OPTICS.run(Database database, Relation<O> relation)
          Run OPTICS on the database.
 Result SLINK.run(Database database, Relation<O> relation)
          Performs the SLINK algorithm on the given database.
 Clustering<Model> SNNClustering.run(Database database, Relation<O> relation)
          Perform SNN clustering
 Clustering<Model> DBSCAN.run(Database database, Relation<O> relation)
          Performs the DBSCAN algorithm on the given database.
 Clustering<MeanModel<V>> KMeans.run(Database database, Relation<V> relation)
          Run k-means
 Clustering<Model> AbstractProjectedDBSCAN.run(Database database, Relation<V> relation)
           
 Clustering<EMModel<V>> EM.run(Database database, Relation<V> relation)
          Performs the EM clustering algorithm on the given database.
protected  List<? extends ModifiableDBIDs> KMeans.sort(List<V> means, Relation<V> database)
          Returns a list of clusters.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation declared as Relation
private  Relation<ParameterizationFunction> CASH.fulldatabase
          The entire database
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type Relation
private  void ORCLUS.assign(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, List<ORCLUS.ORCLUSCluster> clusters)
          Creates a partitioning of the database by assigning each object to its closest seed.
private  MaterializedRelation<ParameterizationFunction> CASH.buildDB(int dim, Matrix basis, DBIDs ids, Relation<ParameterizationFunction> relation)
          Builds a dim-1 dimensional database where the objects are projected into the specified subspace.
private  Database CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation, CASHInterval interval)
          Builds a database for the derivator consisting of the ids in the specified interval.
private  Database CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation, DBIDs ids)
          Builds a database for the derivator consisting of the ids in the specified interval.
private  double[] CASH.determineMinMaxDistance(Relation<ParameterizationFunction> relation, int dimensionality)
          Determines the minimum and maximum function value of all parameterization functions stored in the specified database.
private  Clustering<Model> CASH.doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)
          Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.
private  SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> ERiC.extractCorrelationClusters(Clustering<Model> copacResult, Relation<V> database, int dimensionality)
          Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.
private  Matrix ORCLUS.findBasis(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster cluster, int dim)
          Finds the basis of the subspace of dimensionality dim for the specified cluster.
private  void CASH.initHeap(Heap<IntegerPriorityObject<CASHInterval>> heap, Relation<ParameterizationFunction> relation, int dim, DBIDs ids)
          Initializes the heap with the root intervals.
private  List<ORCLUS.ORCLUSCluster> ORCLUS.initialSeeds(Relation<V> database, int k)
          Initializes the list of seeds wit a random sample of size k.
private  void ORCLUS.merge(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, List<ORCLUS.ORCLUSCluster> clusters, int k_new, int d_new, IndefiniteProgress cprogress)
          Reduces the number of seeds to k_new
private  ORCLUS.ProjectedEnergy ORCLUS.projectedEnergy(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster c_i, ORCLUS.ORCLUSCluster c_j, int i, int j, int dim)
          Computes the projected energy of the specified clusters.
 Clustering<Model> CASH.run(Database database, Relation<ParameterizationFunction> relation)
          Run CASH on the relation.
 Clustering<Model> ORCLUS.run(Database database, Relation<V> relation)
          Performs the ORCLUS algorithm on the given database.
 Clustering<Model> COPAC.run(Relation<V> relation)
          Performs the COPAC algorithm on the given database.
 Clustering<CorrelationModel<V>> ERiC.run(Relation<V> relation)
          Performs the ERiC algorithm on the given database.
private  Matrix CASH.runDerivator(Relation<ParameterizationFunction> relation, int dim, CASHInterval interval, ModifiableDBIDs ids)
          Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.
private  LinearEquationSystem CASH.runDerivator(Relation<ParameterizationFunction> relation, int dimensionality, DBIDs ids)
          Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.
private  Clustering<Model> COPAC.runPartitionAlgorithm(Relation<V> relation, Map<Integer,DBIDs> partitionMap, DistanceQuery<V,D> query)
          Runs the partition algorithm and creates the result.
private  ORCLUS.ORCLUSCluster ORCLUS.union(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster c1, ORCLUS.ORCLUSCluster c2, int dim)
          Returns the union of the two specified clusters.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash declared as Relation
private  Relation<ParameterizationFunction> CASHIntervalSplit.database
          The database storing the parameterization functions.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash with parameters of type Relation
CASHIntervalSplit(Relation<ParameterizationFunction> database, int minPts)
          Initializes the logger and sets the debug status to the given value.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type Relation
private  Map<DBID,PROCLUS.PROCLUSCluster> PROCLUS.assignPoints(Map<DBID,Set<Integer>> dimensions, Relation<V> database)
          Assigns the objects to the clusters.
private  double PROCLUS.avgDistance(V centroid, DBIDs objectIDs, Relation<V> database, int dimension)
          Computes the average distance of the objects to the centroid along the specified dimension.
private  void DiSH.buildHierarchy(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, List<Cluster<SubspaceModel<V>>> clusters, int dimensionality)
          Builds the cluster hierarchy.
private  void DiSH.checkClusters(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap, int minpts)
          Removes the clusters with size < minpts from the cluster map and adds them to their parents.
private  Clustering<SubspaceModel<V>> DiSH.computeClusters(Relation<V> database, ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder, DiSHDistanceFunction.Instance<V> distFunc)
          Computes the hierarchical clusters according to the cluster order.
private  double PROCLUS.evaluateClusters(Map<DBID,PROCLUS.PROCLUSCluster> clusters, Map<DBID,Set<Integer>> dimensions, Relation<V> database)
          Evaluates the quality of the clusters.
private  Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> DiSH.extractClusters(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder)
          Extracts the clusters from the cluster order.
private  List<PROCLUS.PROCLUSCluster> PROCLUS.finalAssignment(List<Pair<V,Set<Integer>>> dimensions, Relation<V> database)
          Refinement step to assign the objects to the final clusters.
private  List<CLIQUESubspace<V>> CLIQUE.findDenseSubspaceCandidates(Relation<V> database, List<CLIQUESubspace<V>> denseSubspaces)
          Determines the k-dimensional dense subspace candidates from the specified (k-1)-dimensional dense subspaces.
private  List<CLIQUESubspace<V>> CLIQUE.findDenseSubspaces(Relation<V> database, List<CLIQUESubspace<V>> denseSubspaces)
          Determines the k-dimensional dense subspaces and performs a pruning if this option is chosen.
private  Map<DBID,Set<Integer>> PROCLUS.findDimensions(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Determines the set of correlated dimensions for each medoid in the specified medoid set.
private  List<Pair<V,Set<Integer>>> PROCLUS.findDimensions(List<PROCLUS.PROCLUSCluster> clusters, Relation<V> database)
          Refinement step that determines the set of correlated dimensions for each cluster centroid.
private  List<CLIQUESubspace<V>> CLIQUE.findOneDimensionalDenseSubspaceCandidates(Relation<V> database)
          Determines the one-dimensional dense subspace candidates by making a pass over the database.
private  List<CLIQUESubspace<V>> CLIQUE.findOneDimensionalDenseSubspaces(Relation<V> database)
          Determines the one dimensional dense subspaces and performs a pruning if this option is chosen.
private  Pair<BitSet,ArrayModifiableDBIDs> DiSH.findParent(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, Pair<BitSet,ArrayModifiableDBIDs> child, Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
          Returns the parent of the specified cluster
private  Map<DBID,List<DistanceResultPair<DoubleDistance>>> PROCLUS.getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i.
private  Collection<CLIQUEUnit<V>> CLIQUE.initOneDimensionalUnits(Relation<V> database)
          Initializes and returns the one dimensional units.
private  boolean DiSH.isParent(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, Cluster<SubspaceModel<V>> parent, List<Cluster<SubspaceModel<V>>> children)
          Returns true, if the specified parent cluster is a parent of one child of the children clusters.
 Clustering<SubspaceModel<V>> DiSH.run(Database database, Relation<V> relation)
          Performs the DiSH algorithm on the given database.
 Clustering<Model> PROCLUS.run(Database database, Relation<V> relation)
          Performs the PROCLUS algorithm on the given database.
 Clustering<SubspaceModel<V>> SUBCLU.run(Relation<V> relation)
          Performs the SUBCLU algorithm on the given database.
 Clustering<SubspaceModel<V>> CLIQUE.run(Relation<V> relation)
          Performs the CLIQUE algorithm on the given database.
private  List<Cluster<Model>> SUBCLU.runDBSCAN(Relation<V> relation, DBIDs ids, Subspace<V> subspace)
          Runs the DBSCAN algorithm on the specified partition of the database in the given subspace.
private  List<Cluster<SubspaceModel<V>>> DiSH.sortClusters(Relation<V> database, Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
          Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial with parameters of type Relation
private  HashMap<String,ModifiableDBIDs> ByLabelClustering.multipleAssignment(Relation<?> data)
          Assigns the objects of the database to multiple clusters according to their labels.
 Clustering<Model> TrivialAllNoise.run(Relation<?> relation)
           
 Clustering<Model> ByLabelClustering.run(Relation<?> relation)
          Run the actual clustering algorithm.
 Clustering<Model> ByLabelHierarchicalClustering.run(Relation<?> relation)
          Run the actual clustering algorithm.
 Clustering<Model> TrivialAllInOne.run(Relation<?> relation)
           
private  HashMap<String,ModifiableDBIDs> ByLabelClustering.singleAssignment(Relation<?> data)
          Assigns the objects of the database to single clusters according to their labels.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier that implement Relation
protected static class SOD.SODProxyScoreResult
          Proxy class that converts a model result to an actual SOD score result.
 

Fields in de.lmu.ifi.dbs.elki.algorithm.outlier declared as Relation
(package private)  Relation<SOD.SODModel<?>> SOD.SODProxyScoreResult.models
          Model result this is a proxy for.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type Relation
protected  ArrayList<ArrayList<DBIDs>> AbstractAggarwalYuOutlier.buildRanges(Relation<V> database)
          Grid discretization of the data:
Each attribute of data is divided into phi equi-depth ranges.
private  PriorityQueue<FCPair<Double,DBID>> ABOD.calcDistsandNN(Relation<V> data, KernelMatrix kernelMatrix, int sampleSize, DBID aKey, HashMap<DBID,Double> dists)
           
private  PriorityQueue<FCPair<Double,DBID>> ABOD.calcDistsandRNDSample(Relation<V> data, KernelMatrix kernelMatrix, int sampleSize, DBID aKey, HashMap<DBID,Double> dists)
           
protected  List<DistanceResultPair<D>> ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint, Relation<V> database, DistanceQuery<V,D> distFunc)
          Computes for each object the distance to one reference point.
private  void ABOD.generateExplanation(Relation<V> data, DBID key, LinkedList<DBID> expList)
           
 void ABOD.getExplanations(Relation<V> data)
          Get explanations for points in the database.
 OutlierResult ABOD.getFastRanking(Relation<V> relation, int k, int sampleSize)
          Main part of the algorithm.
private  KNNList<DoubleDistance> SOD.getKNN(Relation<V> database, SimilarityQuery<V,IntegerDistance> snnInstance, DBID queryObject)
          Provides the k nearest neighbors in terms of the shared nearest neighbor distance.
private  Pair<Pair<KNNQuery<O,D>,KNNQuery<O,D>>,Pair<RKNNQuery<O,D>,RKNNQuery<O,D>>> OnlineLOF.getKNNAndRkNNQueries(Relation<O> relation, StepProgress stepprog)
          Get the kNN and rkNN queries for the algorithm.
protected  Pair<KNNQuery<O,D>,KNNQuery<O,D>> LoOP.getKNNQueries(Database database, Relation<O> relation, StepProgress stepprog)
          Get the kNN queries for the algorithm.
private  Pair<KNNQuery<O,D>,KNNQuery<O,D>> LOF.getKNNQueries(Relation<O> relation, StepProgress stepprog)
          Get the kNN queries for the algorithm.
 OutlierResult ABOD.getRanking(Relation<V> relation, int k)
          Main part of the algorithm.
private  double GaussianUniformMixture.loglikelihoodNormal(DBIDs objids, Relation<V> database)
          Computes the loglikelihood of all normal objects.
 OutlierResult KNNOutlier.run(Database database, Relation<O> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult LoOP.run(Database database, Relation<O> relation)
          Performs the LoOP algorithm on the given database.
 OutlierResult AbstractDBOutlier.run(Database database, Relation<O> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult OPTICSOF.run(Database database, Relation<O> relation)
          Perform OPTICS-based outlier detection.
 OutlierResult LDOF.run(Database database, Relation<O> relation)
           
 OutlierResult KNNWeightOutlier.run(Database database, Relation<O> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult ABOD.run(Database database, Relation<V> relation)
          Run ABOD on the data set
 OutlierResult EMOutlier.run(Database database, Relation<V> relation)
          Runs the algorithm in the timed evaluation part.
 OutlierResult AggarwalYuEvolutionary.run(Database database, Relation<V> relation)
          Performs the evolutionary algorithm on the given database.
 OutlierResult OnlineLOF.run(Relation<O> relation)
          Performs the Generalized LOF_SCORE algorithm on the given database by calling #doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to the preprocessors.
 OutlierResult LOF.run(Relation<O> relation)
          Performs the Generalized LOF_SCORE algorithm on the given database by calling #doRunInTime(Database).
 OutlierResult GaussianUniformMixture.run(Relation<V> relation)
           
 OutlierResult ReferenceBasedOutlierDetection.run(Relation<V> relation)
          Run the algorithm on the given relation.
 OutlierResult GaussianModel.run(Relation<V> relation)
           
 OutlierResult AggarwalYuNaive.run(Relation<V> relation)
          Run the algorithm on the given relation.
 OutlierResult SOD.run(Relation<V> relation)
          Performs the SOD algorithm on the given database.
 

Constructors in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type Relation
AggarwalYuEvolutionary.EvolutionarySearch(Relation<V> database, ArrayList<ArrayList<DBIDs>> ranges, int m, Long seed)
          Constructor.
SOD.SODModel(Relation<O> database, DBIDs neighborhood, double alpha, O queryObject)
          Initialize SOD Model
SOD.SODProxyScoreResult(Relation<SOD.SODModel<?>> models, DBIDs dbids)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.meta with parameters of type Relation
 OutlierResult ExternalDoubleOutlierScore.run(Database database, Relation<?> relation)
          Run the algorithm.
 OutlierResult FeatureBagging.run(Relation<NumberVector<?,?>> relation)
          Run the algorithm on a data set.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with parameters of type Relation
 OutlierResult TrimmedMeanApproach.run(Database database, Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Run the algorithm
 OutlierResult TrimmedMeanApproach.run(Database database, Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Run the algorithm
 OutlierResult CTLuZTestOutlier.run(Database database, Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult CTLuZTestOutlier.run(Database database, Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult SLOM.run(Database database, Relation<N> spatial, Relation<O> relation)
           
 OutlierResult SLOM.run(Database database, Relation<N> spatial, Relation<O> relation)
           
 OutlierResult SOF.run(Database database, Relation<N> spatial, Relation<O> relation)
          The main run method
 OutlierResult SOF.run(Database database, Relation<N> spatial, Relation<O> relation)
          The main run method
 OutlierResult CTLuRandomWalkEC.run(Relation<N> spatial, Relation<? extends NumberVector<?,?>> relation)
          Run the algorithm
 OutlierResult CTLuRandomWalkEC.run(Relation<N> spatial, Relation<? extends NumberVector<?,?>> relation)
          Run the algorithm
 OutlierResult CTLuScatterplotOutlier.run(Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult CTLuScatterplotOutlier.run(Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult CTLuMoranScatterplotOutlier.run(Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult CTLuMoranScatterplotOutlier.run(Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult CTLuMedianAlgorithm.run(Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult CTLuMedianAlgorithm.run(Relation<N> nrel, Relation<? extends NumberVector<?,?>> relation)
          Main method
 OutlierResult CTLuMeanMultipleAttributes.run(Relation<N> spatial, Relation<O> attributes)
           
 OutlierResult CTLuMeanMultipleAttributes.run(Relation<N> spatial, Relation<O> attributes)
           
 OutlierResult CTLuMedianMultipleAttributes.run(Relation<N> spatial, Relation<O> attributes)
          Run the algorithm
 OutlierResult CTLuMedianMultipleAttributes.run(Relation<N> spatial, Relation<O> attributes)
          Run the algorithm
 OutlierResult CTLuGLSBackwardSearchAlgorithm.run(Relation<V> relationx, Relation<? extends NumberVector<?,?>> relationy)
          Run the algorithm
 OutlierResult CTLuGLSBackwardSearchAlgorithm.run(Relation<V> relationx, Relation<? extends NumberVector<?,?>> relationy)
          Run the algorithm
private  Pair<DBID,Double> CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx, Relation<? extends NumberVector<?,?>> relationy)
          Run a single iteration of the GLS-SOD modeling step
private  Pair<DBID,Double> CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx, Relation<? extends NumberVector<?,?>> relationy)
          Run a single iteration of the GLS-SOD modeling step
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood with parameters of type Relation
private  DataStore<DBIDs> ExtendedNeighborhood.Factory.extendNeighborhood(Relation<? extends O> database)
          Method to load the external neighbors.
 NeighborSetPredicate ExternalNeighborhood.Factory.instantiate(Relation<?> database)
           
 NeighborSetPredicate NeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
          Instantiation method.
 NeighborSetPredicate PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Relation<? extends O> relation)
           
 NeighborSetPredicate ExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database)
           
private  DataStore<DBIDs> ExternalNeighborhood.Factory.loadNeighbors(Relation<?> database)
          Method to load the external neighbors.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted with parameters of type Relation
 UnweightedNeighborhoodAdapter UnweightedNeighborhoodAdapter.Factory.instantiate(Relation<? extends O> relation)
           
 LinearWeightedExtendedNeighborhood LinearWeightedExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database)
           
 WeightedNeighborSetPredicate WeightedNeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
          Instantiation method.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier.trivial with parameters of type Relation
 OutlierResult TrivialNoOutlier.run(Relation<?> relation)
          Run the actual algorithm.
 OutlierResult ByLabelOutlier.run(Relation<?> relation)
          Run the algorithm
 OutlierResult TrivialAllOutlier.run(Relation<?> relation)
          Run the actual algorithm.
 

Uses of Relation in de.lmu.ifi.dbs.elki.algorithm.statistics
 

Methods in de.lmu.ifi.dbs.elki.algorithm.statistics with parameters of type Relation
private  DoubleMinMax DistanceStatisticsWithClasses.exactMinMax(Relation<O> database, DistanceQuery<O,D> distFunc)
           
 HistogramResult<DoubleVector> RankingQualityHistogram.run(Database database, Relation<O> relation)
           
private  DoubleMinMax DistanceStatisticsWithClasses.sampleMinMax(Relation<O> database, DistanceQuery<O,D> distFunc)
           
 

Uses of Relation in de.lmu.ifi.dbs.elki.application.visualization
 

Fields in de.lmu.ifi.dbs.elki.application.visualization declared as Relation
protected  Relation<? extends O> KNNExplorer.ExplorerWindow.data
           
protected  Relation<String> KNNExplorer.ExplorerWindow.labelRep
          The label representation
 

Uses of Relation in de.lmu.ifi.dbs.elki.data.model
 

Fields in de.lmu.ifi.dbs.elki.data.model declared as Relation
private  Relation<V> Bicluster.database
          The database this bicluster is defined for.
 

Methods in de.lmu.ifi.dbs.elki.data.model that return Relation
 Relation<V> Bicluster.getDatabase()
          Getter to retrieve the database
 

Constructors in de.lmu.ifi.dbs.elki.data.model with parameters of type Relation
Bicluster(ArrayDBIDs rowIDs, int[] colIDs, Relation<V> database)
          Defines a new bicluster for given parameters.
Bicluster(int[] rowIDs, int[] colIDs, Relation<V> database)
          Deprecated. Use DBIDs, not integers!
BiclusterWithInverted(ArrayDBIDs rowIDs, int[] colIDs, Relation<V> database)
           
BiclusterWithInverted(int[] rowIDs, int[] colIDs, Relation<V> database)
          Deprecated. Use DBIDs, not integer indexes!
CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<V> db, Matrix strongEigenvectors, Matrix weakEigenvectors, Matrix similarityMatrix, Vector centroid)
          Provides a new CorrelationAnalysisSolution holding the specified matrix.
CorrelationAnalysisSolution(LinearEquationSystem solution, Relation<V> db, Matrix strongEigenvectors, Matrix weakEigenvectors, Matrix similarityMatrix, Vector centroid, NumberFormat nf)
          Provides a new CorrelationAnalysisSolution holding the specified matrix and number format.
 

Uses of Relation in de.lmu.ifi.dbs.elki.database
 

Fields in de.lmu.ifi.dbs.elki.database with type parameters of type Relation
protected  List<Relation<?>> AbstractDatabase.relations
          The relations we manage.
 

Methods in de.lmu.ifi.dbs.elki.database that return Relation
private  Relation<?> StaticArrayDatabase.addNewRelation(SimpleTypeInformation<?> meta)
          Add a new representation for the given meta.
private  Relation<?> HashmapDatabase.addNewRelation(SimpleTypeInformation<?> meta)
          Add a new representation for the given meta.
protected  Relation<?>[] StaticArrayDatabase.alignColumns(ObjectBundle pack)
          Find a mapping from package columns to database columns, eventually adding new database columns when needed.
protected  Relation<?>[] HashmapDatabase.alignColumns(ObjectBundle pack)
          Find a mapping from package columns to database columns, eventually adding new database columns when needed.
<O> Relation<O>
AbstractDatabase.getRelation(TypeInformation restriction, Object... hints)
           
<O> Relation<O>
Database.getRelation(TypeInformation restriction, Object... hints)
          Get an object representation.
 

Methods in de.lmu.ifi.dbs.elki.database that return types with arguments of type Relation
 Collection<Relation<?>> AbstractDatabase.getRelations()
           
 Collection<Relation<?>> Database.getRelations()
          Get all relations of a database.
 

Methods in de.lmu.ifi.dbs.elki.database with parameters of type Relation
 void ProxyDatabase.addRelation(Relation<?> relation)
          Add a new representation.
<O,D extends Distance<D>>
DistanceQuery<O,D>
AbstractDatabase.getDistanceQuery(Relation<O> objQuery, DistanceFunction<? super O,D> distanceFunction, Object... hints)
           
<O,D extends Distance<D>>
DistanceQuery<O,D>
Database.getDistanceQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get the distance query for a particular distance function.
static
<O,D extends Distance<D>>
KNNQuery<O,D>
QueryUtil.getKNNQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a KNN query object for the given distance function.
static
<O,D extends Distance<D>>
RangeQuery<O,D>
QueryUtil.getRangeQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a range query object for the given distance function.
static
<O,D extends Distance<D>>
RKNNQuery<O,D>
QueryUtil.getRKNNQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a rKNN query object for the given distance function.
<O,D extends Distance<D>>
SimilarityQuery<O,D>
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery, SimilarityFunction<? super O,D> similarityFunction, Object... hints)
           
<O,D extends Distance<D>>
SimilarityQuery<O,D>
Database.getSimilarityQuery(Relation<O> relation, SimilarityFunction<? super O,D> similarityFunction, Object... hints)
          Get the similarity query for a particular similarity function.
 

Constructors in de.lmu.ifi.dbs.elki.database with parameters of type Relation
ProxyDatabase(DBIDs ids, Relation<?>... relations)
          Constructor.
 

Constructor parameters in de.lmu.ifi.dbs.elki.database with type arguments of type Relation
ProxyDatabase(DBIDs ids, Iterable<Relation<?>> relations)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.database.query
 

Fields in de.lmu.ifi.dbs.elki.database.query declared as Relation
protected  Relation<? extends O> AbstractDataBasedQuery.relation
          The data to use for this query
 

Methods in de.lmu.ifi.dbs.elki.database.query that return Relation
 Relation<? extends O> AbstractDataBasedQuery.getRelation()
          Give access to the underlying data query.
 

Constructors in de.lmu.ifi.dbs.elki.database.query with parameters of type Relation
AbstractDataBasedQuery(Relation<? extends O> relation)
          Database this query works on.
 

Uses of Relation in de.lmu.ifi.dbs.elki.database.query.distance
 

Methods in de.lmu.ifi.dbs.elki.database.query.distance that return Relation
 Relation<? extends O> DistanceQuery.getRelation()
          Access the underlying data query.
 

Constructors in de.lmu.ifi.dbs.elki.database.query.distance with parameters of type Relation
AbstractDatabaseDistanceQuery(Relation<? extends O> relation)
          Constructor.
AbstractDistanceQuery(Relation<? extends O> relation)
          Constructor.
DBIDDistanceQuery(Relation<DBID> relation, DBIDDistanceFunction<D> distanceFunction)
          Constructor.
PrimitiveDistanceQuery(Relation<? extends O> relation, PrimitiveDistanceFunction<? super O,D> distanceFunction)
          Constructor.
PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation, PrimitiveDistanceFunction<? super O,D> distanceFunction, PrimitiveSimilarityFunction<? super O,D> similarityFunction)
          Constructor.
SpatialPrimitiveDistanceQuery(Relation<? extends V> relation, SpatialPrimitiveDistanceFunction<? super V,D> distanceFunction)
           
 

Uses of Relation in de.lmu.ifi.dbs.elki.database.query.knn
 

Methods in de.lmu.ifi.dbs.elki.database.query.knn that return Relation
 Relation<? extends O> KNNQuery.getRelation()
          Access the underlying data query.
 

Constructors in de.lmu.ifi.dbs.elki.database.query.knn with parameters of type Relation
PreprocessorKNNQuery(Relation<O> database, MaterializeKNNPreprocessor.Factory<O,D> preprocessor)
          Constructor.
PreprocessorKNNQuery(Relation<O> database, MaterializeKNNPreprocessor<O,D> preprocessor)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.database.query.range
 

Methods in de.lmu.ifi.dbs.elki.database.query.range that return Relation
 Relation<? extends O> RangeQuery.getRelation()
          Access the underlying data query.
 

Uses of Relation in de.lmu.ifi.dbs.elki.database.query.rknn
 

Methods in de.lmu.ifi.dbs.elki.database.query.rknn that return Relation
 Relation<? extends O> RKNNQuery.getRelation()
          Access the underlying data query.
 

Constructors in de.lmu.ifi.dbs.elki.database.query.rknn with parameters of type Relation
PreprocessorRKNNQuery(Relation<O> database, MaterializeKNNAndRKNNPreprocessor.Factory<O,D> preprocessor)
          Constructor.
PreprocessorRKNNQuery(Relation<O> database, MaterializeKNNAndRKNNPreprocessor<O,D> preprocessor)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.database.query.similarity
 

Methods in de.lmu.ifi.dbs.elki.database.query.similarity that return Relation
 Relation<? extends O> SimilarityQuery.getRelation()
          Access the underlying data query.
 

Constructors in de.lmu.ifi.dbs.elki.database.query.similarity with parameters of type Relation
AbstractDBIDSimilarityQuery(Relation<? extends O> relation)
          Constructor.
AbstractSimilarityQuery(Relation<? extends O> relation)
          Constructor.
PrimitiveSimilarityQuery(Relation<? extends O> relation, PrimitiveSimilarityFunction<? super O,D> similarityFunction)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.database.relation
 

Classes in de.lmu.ifi.dbs.elki.database.relation that implement Relation
 class ConvertToStringView
          Representation adapter that uses toString() to produce a string representation.
 class DBIDView
          Pseudo-representation that is the object ID itself.
 class MaterializedRelation<O>
          Represents a single representation.
 class ProxyView<O>
          A virtual partitioning of the database.
 

Fields in de.lmu.ifi.dbs.elki.database.relation declared as Relation
(package private)  Relation<?> ConvertToStringView.existing
          The database we use
private  Relation<O> ProxyView.inner
          The wrapped representation where we get the IDs from.
 

Methods in de.lmu.ifi.dbs.elki.database.relation with parameters of type Relation
static
<O> ProxyView<O>
ProxyView.wrap(Database database, DBIDs idview, Relation<O> inner)
          Constructor-like static method.
 

Constructors in de.lmu.ifi.dbs.elki.database.relation with parameters of type Relation
ConvertToStringView(Relation<?> existing)
          Constructor.
ProxyView(Database database, DBIDs idview, Relation<O> inner)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type Relation
<O extends DBID>
DistanceQuery<O,D>
AbstractDBIDDistanceFunction.instantiate(Relation<O> database)
           
<T extends NumberVector<?,?>>
PrimitiveDistanceQuery<T,DoubleDistance>
AbstractCosineDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
SquaredEuclideanDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
ManhattanDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
EuclideanDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialDistanceQuery<T,DoubleDistance>
MaximumDistanceFunction.instantiate(Relation<T> relation)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
MinimumDistanceFunction.instantiate(Relation<T> relation)
           
<T extends O>
DistanceQuery<T,D>
DistanceFunction.instantiate(Relation<T> relation)
          Instantiate with a database to get the actual distance query.
<T extends O>
FilteredLocalPCABasedDistanceFunction.Instance<T,?,D>
FilteredLocalPCABasedDistanceFunction.instantiate(Relation<T> database)
          Instantiate with a database to get the actual distance query.
<T extends O>
DistanceQuery<T,D>
MinKDistance.instantiate(Relation<T> relation)
           
<T extends O>
SharedNearestNeighborJaccardDistanceFunction.Instance<T>
SharedNearestNeighborJaccardDistanceFunction.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,D>
AbstractPrimitiveDistanceFunction.instantiate(Relation<T> relation)
          Instantiate with a database to get the actual distance query.
<T extends V>
SpatialDistanceQuery<T,D>
SpatialPrimitiveDistanceFunction.instantiate(Relation<T> relation)
           
<T extends V>
LocallyWeightedDistanceFunction.Instance<T>
LocallyWeightedDistanceFunction.instantiate(Relation<T> database)
           
 

Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type Relation
AbstractDatabaseDistanceFunction.Instance(Relation<O> database, DistanceFunction<? super O,D> parent)
          Constructor.
AbstractIndexBasedDistanceFunction.Instance(Relation<O> database, I index, F parent)
          Constructor.
LocallyWeightedDistanceFunction.Instance(Relation<V> database, LocalProjectionIndex<V,?> index, LocallyWeightedDistanceFunction<? super V> distanceFunction)
          Constructor.
MinKDistance.Instance(Relation<T> relation, int k, DistanceFunction<? super O,D> parentDistance)
          Constructor.
SharedNearestNeighborJaccardDistanceFunction.Instance(Relation<T> database, SharedNearestNeighborIndex<T> preprocessor, SharedNearestNeighborJaccardDistanceFunction<T> parent)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with parameters of type Relation
abstract
<T extends O>
DistanceQuery<T,DoubleDistance>
AbstractSimilarityAdapter.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterLn.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterLinear.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterArccos.instantiate(Relation<T> database)
           
 

Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter with parameters of type Relation
AbstractSimilarityAdapter.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterArccos.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLinear.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
SimilarityAdapterLn.Instance(Relation<O> database, DistanceFunction<? super O,DoubleDistance> parent, SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram with parameters of type Relation
<T extends NumberVector<?,?>>
SpatialDistanceQuery<T,DoubleDistance>
HistogramIntersectionDistanceFunction.instantiate(Relation<T> relation)
           
 

Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with parameters of type Relation
<T extends NumberVector<?,?>>
PCABasedCorrelationDistanceFunction.Instance<T>
PCABasedCorrelationDistanceFunction.instantiate(Relation<T> database)
           
<T extends NumberVector<?,?>>
ERiCDistanceFunction.Instance<T>
ERiCDistanceFunction.instantiate(Relation<T> database)
           
 

Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with parameters of type Relation
ERiCDistanceFunction.Instance(Relation<V> database, FilteredLocalPCAIndex<V> index, ERiCDistanceFunction parent, double delta, double tau)
          Constructor.
PCABasedCorrelationDistanceFunction.Instance(Relation<V> database, FilteredLocalPCAIndex<V> index, double delta, PCABasedCorrelationDistanceFunction distanceFunction)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace with parameters of type Relation
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
DimensionsSelectingEuclideanDistanceFunction.instantiate(Relation<T> database)
           
<T extends NumberVector<?,?>>
DiSHDistanceFunction.Instance<T>
DiSHDistanceFunction.instantiate(Relation<T> database)
           
<T extends NumberVector<?,?>>
SpatialPrimitiveDistanceQuery<T,DoubleDistance>
DimensionSelectingDistanceFunction.instantiate(Relation<T> database)
           
<T extends V>
HiSCDistanceFunction.Instance<T>
HiSCDistanceFunction.instantiate(Relation<T> database)
           
<V extends NumberVector<?,?>>
SubspaceDistanceFunction.Instance<V>
SubspaceDistanceFunction.instantiate(Relation<V> database)
           
 

Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace with parameters of type Relation
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance(Relation<V> database, P preprocessor, double epsilon, AbstractPreferenceVectorBasedCorrelationDistanceFunction<? super V,?> distanceFunction)
          Constructor.
DiSHDistanceFunction.Instance(Relation<V> database, DiSHPreferenceVectorIndex<V> index, double epsilon, DiSHDistanceFunction distanceFunction)
          Constructor.
HiSCDistanceFunction.Instance(Relation<V> database, HiSCPreferenceVectorIndex<V> index, double epsilon, HiSCDistanceFunction<? super V> distanceFunction)
          Constructor.
SubspaceDistanceFunction.Instance(Relation<V> database, FilteredLocalPCAIndex<V> index, SubspaceDistanceFunction distanceFunction)
           
 

Uses of Relation in de.lmu.ifi.dbs.elki.distance.similarityfunction
 

Fields in de.lmu.ifi.dbs.elki.distance.similarityfunction declared as Relation
protected  Relation<? extends DBID> AbstractDBIDSimilarityFunction.database
          The database we work on
 

Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction with parameters of type Relation
abstract
<T extends O>
AbstractIndexBasedSimilarityFunction.Instance<T,?,R,D>
AbstractIndexBasedSimilarityFunction.instantiate(Relation<T> database)
           
<T extends O>
SimilarityQuery<T,D>
SimilarityFunction.instantiate(Relation<T> relation)
          Instantiate with a representation to get the actual similarity query.
<T extends O>
IndexBasedSimilarityFunction.Instance<T,?,D>
IndexBasedSimilarityFunction.instantiate(Relation<T> database)
          Preprocess the database to get the actual distance function.
<T extends O>
SimilarityQuery<T,D>
AbstractPrimitiveSimilarityFunction.instantiate(Relation<T> relation)
           
<T extends O>
FractionalSharedNearestNeighborSimilarityFunction.Instance<T>
FractionalSharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database)
           
<T extends O>
SharedNearestNeighborSimilarityFunction.Instance<T>
SharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database)
           
 

Constructors in de.lmu.ifi.dbs.elki.distance.similarityfunction with parameters of type Relation
AbstractDBIDSimilarityFunction(Relation<? extends DBID> database)
          Constructor.
AbstractIndexBasedSimilarityFunction.Instance(Relation<O> database, I index)
          Constructor.
FractionalSharedNearestNeighborSimilarityFunction.Instance(Relation<T> database, SharedNearestNeighborIndex<T> preprocessor)
          Constructor.
SharedNearestNeighborSimilarityFunction.Instance(Relation<O> database, SharedNearestNeighborIndex<O> preprocessor)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
 

Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type Relation
<T extends NumberVector<?,?>>
DistanceSimilarityQuery<T,DoubleDistance>
FooKernelFunction.instantiate(Relation<T> database)
           
<T extends NumberVector<?,?>>
DistanceSimilarityQuery<T,DoubleDistance>
PolynomialKernelFunction.instantiate(Relation<T> database)
           
<T extends O>
DistanceSimilarityQuery<T,DoubleDistance>
LinearKernelFunction.instantiate(Relation<T> database)
           
 

Constructors in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type Relation
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction, Relation<? extends O> database)
          Deprecated. ID mapping is not reliable!
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction, Relation<? extends O> database, ArrayDBIDs ids)
          Provides a new kernel matrix.
 

Uses of Relation in de.lmu.ifi.dbs.elki.evaluation.roc
 

Fields in de.lmu.ifi.dbs.elki.evaluation.roc declared as Relation
private  Relation<Double> ROC.OutlierScoreAdapter.scores
          Outlier score
 

Uses of Relation in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix
 

Fields in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix declared as Relation
(package private)  Relation<?> ComputeSimilarityMatrixImage.SimilarityMatrix.relation
          The database
 

Methods in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix that return Relation
 Relation<?> ComputeSimilarityMatrixImage.SimilarityMatrix.getRelation()
          Get the relation
 

Methods in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with parameters of type Relation
private  ComputeSimilarityMatrixImage.SimilarityMatrix ComputeSimilarityMatrixImage.computeSimilarityMatrixImage(Relation<O> relation, Iterator<DBID> iter)
          Compute the actual similarity image.
 

Constructors in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with parameters of type Relation
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img, Relation<?> relation, ArrayDBIDs ids)
          Constructor
 

Uses of Relation in de.lmu.ifi.dbs.elki.index
 

Fields in de.lmu.ifi.dbs.elki.index declared as Relation
protected  Relation<O> AbstractIndex.relation
          The representation we are bound to.
 

Methods in de.lmu.ifi.dbs.elki.index with parameters of type Relation
 I IndexFactory.instantiate(Relation<V> relation)
          Sets the database in the distance function of this index (if existing).
 

Constructors in de.lmu.ifi.dbs.elki.index with parameters of type Relation
AbstractIndex(Relation<O> relation)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed with parameters of type Relation
 I LocalProjectionIndex.Factory.instantiate(Relation<V> relation)
          Instantiate the index for a given database.
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed with parameters of type Relation
AbstractPreprocessorIndex(Relation<O> relation)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type Relation
private  MetricalIndexTree<O,D,N,E> MetricalIndexApproximationMaterializeKNNPreprocessor.getMetricalIndex(Relation<O> relation)
          Do some (limited) type checking, then cast the database into a spatial database.
 SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?,?>,D,N,E> SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?,?>> relation)
           
 PartitionApproximationMaterializeKNNPreprocessor<O,D> PartitionApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
           
 MetricalIndexApproximationMaterializeKNNPreprocessor<O,D,N,E> MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
           
 MaterializeKNNPreprocessor<O,D> MaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
           
 MaterializeKNNAndRKNNPreprocessor<O,D> MaterializeKNNAndRKNNPreprocessor.Factory.instantiate(Relation<O> relation)
           
abstract  AbstractMaterializeKNNPreprocessor<O,D> AbstractMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type Relation
AbstractMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor.
MaterializeKNNAndRKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor.
MaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor with preprocessing step.
MaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k, boolean preprocess)
          Constructor.
MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor
PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k, int partitions)
          Constructor
SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, int k)
          Constructor
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type Relation
abstract  I AbstractFilteredPCAIndex.Factory.instantiate(Relation<NV> relation)
           
 I FilteredLocalPCAIndex.Factory.instantiate(Relation<NV> relation)
          Instantiate the index for a given database.
 KNNQueryFilteredPCAIndex<V> KNNQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation)
           
 RangeQueryFilteredPCAIndex<V> RangeQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.localpca with parameters of type Relation
AbstractFilteredPCAIndex(Relation<NV> relation, PCAFilteredRunner<NV> pca)
          Constructor.
KNNQueryFilteredPCAIndex(Relation<NV> database, PCAFilteredRunner<NV> pca, KNNQuery<NV,DoubleDistance> knnQuery, int k)
          Constructor.
RangeQueryFilteredPCAIndex(Relation<NV> database, PCAFilteredRunner<NV> pca, RangeQuery<NV,DoubleDistance> rangeQuery, DoubleDistance epsilon)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.preference
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.preference with parameters of type Relation
private  BitSet HiSCPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation, DBID id, DBIDs neighborIDs, StringBuffer msg)
          Determines the preference vector according to the specified neighbor ids.
private  BitSet DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation, ModifiableDBIDs[] neighborIDs, StringBuffer msg)
          Determines the preference vector according to the specified neighbor ids.
private  BitSet DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation, ModifiableDBIDs[] neighborIDs, StringBuffer msg)
          Determines the preference vector with the apriori strategy.
private  RangeQuery<V,DoubleDistance>[] DiSHPreferenceVectorIndex.initRangeQueries(Relation<V> relation, int dimensionality)
          Initializes the dimension selecting distancefunctions to determine the preference vectors.
 DiSHPreferenceVectorIndex<V> DiSHPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
           
abstract  I AbstractPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
           
 I PreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
          Instantiate the index for a given database.
 HiSCPreferenceVectorIndex<V> HiSCPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.preference with parameters of type Relation
AbstractPreferenceVectorIndex(Relation<NV> relation)
          Constructor.
DiSHPreferenceVectorIndex(Relation<V> relation, DoubleDistance[] epsilon, int minpts, DiSHPreferenceVectorIndex.Strategy strategy)
          Constructor.
HiSCPreferenceVectorIndex(Relation<V> relation, double alpha, int k)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.snn
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.snn with parameters of type Relation
 I SharedNearestNeighborIndex.Factory.instantiate(Relation<O> database)
          Instantiate the index for a given database.
 SharedNearestNeighborPreprocessor<O,D> SharedNearestNeighborPreprocessor.Factory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.snn with parameters of type Relation
SharedNearestNeighborPreprocessor(Relation<O> relation, int numberOfNeighbors, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type Relation
protected abstract  P AbstractSubspaceProjectionIndex.computeProjection(DBID id, List<DistanceResultPair<D>> neighbors, Relation<NV> relation)
          This method implements the type of variance analysis to be computed for a given point.
protected  SubspaceProjectionResult PreDeConSubspaceIndex.computeProjection(DBID id, List<DistanceResultPair<D>> neighbors, Relation<V> database)
           
protected  PCAFilteredResult FourCSubspaceIndex.computeProjection(DBID id, List<DistanceResultPair<D>> neighbors, Relation<V> database)
           
 I SubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation)
          Instantiate the index for a given database.
abstract  I AbstractSubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation)
           
 PreDeConSubspaceIndex<V,D> PreDeConSubspaceIndex.Factory.instantiate(Relation<V> relation)
           
 FourCSubspaceIndex<V,D> FourCSubspaceIndex.Factory.instantiate(Relation<V> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with parameters of type Relation
AbstractSubspaceProjectionIndex(Relation<NV> relation, D epsilon, DistanceFunction<NV,D> rangeQueryDistanceFunction, int minpts)
          Constructor.
FourCSubspaceIndex(Relation<V> relation, D epsilon, DistanceFunction<V,D> rangeQueryDistanceFunction, int minpts, PCAFilteredRunner<V> pca)
          Full constructor.
PreDeConSubspaceIndex(Relation<V> relation, D epsilon, DistanceFunction<V,D> rangeQueryDistanceFunction, int minpts, double delta)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree
 

Methods in de.lmu.ifi.dbs.elki.index.tree with parameters of type Relation
abstract  I TreeIndexFactory.instantiate(Relation<O> relation)
           
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp
 

Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp declared as Relation
private  Relation<O> MkAppTreeIndex.relation
          The relation indexed
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation
 MkAppTreeIndex<O,D> MkAppTreeFactory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type Relation
MkAppTreeIndex(Relation<O> relation, PageFile<MkAppTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max, int p, boolean log)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop
 

Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop declared as Relation
private  Relation<O> MkCoPTreeIndex.relation
          Relation indexed
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation
 MkCoPTreeIndex<O,D> MkCopTreeFactory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type Relation
MkCoPTreeIndex(Relation<O> relation, PageFile<MkCoPTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax
 

Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax declared as Relation
private  Relation<O> MkMaxTreeIndex.relation
           
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation
 MkMaxTreeIndex<O,D> MkMaxTreeFactory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type Relation
MkMaxTreeIndex(Relation<O> relation, PageFile<MkMaxTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab
 

Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab declared as Relation
private  Relation<O> MkTabTreeIndex.relation
          The relation indexed.
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation
 MkTabTreeIndex<O,D> MkTabTreeFactory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type Relation
MkTabTreeIndex(Relation<O> relation, PageFile<MkTabTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree
 

Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree declared as Relation
private  Relation<O> MTreeIndex.relation
          The relation indexed.
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation
 MTreeIndex<O,D> MTreeFactory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type Relation
MTreeIndex(Relation<O> relation, PageFile<MTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu
 

Fields in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu declared as Relation
private  Relation<O> DeLiCluTreeIndex.relation
          The relation we index
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation
 DeLiCluTreeIndex<O> DeLiCluTreeFactory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with parameters of type Relation
DeLiCluTreeIndex(Relation<O> relation, PageFile<DeLiCluNode> pagefile, BulkSplit bulkSplitter, InsertionStrategy insertionStrategy)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar
 

Fields in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar declared as Relation
private  Relation<O> RStarTreeIndex.relation
          Relation
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation
 RStarTreeIndex<O> RStarTreeFactory.instantiate(Relation<O> relation)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with parameters of type Relation
RStarTreeIndex(Relation<O> relation, PageFile<RStarTreeNode> pagefile, BulkSplit bulkSplitter, InsertionStrategy insertionStrategy)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.math.linearalgebra
 

Methods in de.lmu.ifi.dbs.elki.math.linearalgebra with parameters of type Relation
<F extends NumberVector<? extends F,?>>
F
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
          Get the mean as vector.
static ProjectedCentroid ProjectedCentroid.make(BitSet dims, Relation<? extends NumberVector<?,?>> relation)
          Static Constructor from a relation.
static ProjectedCentroid ProjectedCentroid.make(BitSet dims, Relation<? extends NumberVector<?,?>> relation, Iterable<DBID> ids)
          Static Constructor from a relation.
static Centroid Centroid.make(Relation<? extends NumberVector<?,?>> relation)
          Static constructor from an existing relation.
static CovarianceMatrix CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation)
          Static Constructor from a full relation.
static Centroid Centroid.make(Relation<? extends NumberVector<?,?>> relation, Iterable<DBID> ids)
          Static constructor from an existing relation.
static CovarianceMatrix CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation, Iterable<DBID> ids)
          Static Constructor from a full relation.
<F extends NumberVector<? extends F,?>>
F
Centroid.toVector(Relation<? extends F> relation)
          Get the data as vector
 

Uses of Relation in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 

Methods in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with parameters of type Relation
 PCAResult PCARunner.processDatabase(Relation<? extends V> database)
          Run PCA on the complete database
 Matrix AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
           
 Matrix CovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
          Compute Covariance Matrix for a complete database
 Matrix StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
          Compute Covariance Matrix for a complete database
 Matrix WeightedCovarianceMatrixBuilder.processIds(DBIDs ids, Relation<? extends V> database)
          Weighted Covariance Matrix for a set of IDs.
 PCAResult PCARunner.processIds(DBIDs ids, Relation<? extends V> database)
          Run PCA on a collection of database IDs
abstract  Matrix AbstractCovarianceMatrixBuilder.processIds(DBIDs ids, Relation<? extends V> database)
           
 Matrix CovarianceMatrixBuilder.processIds(DBIDs ids, Relation<? extends V> database)
          Compute Covariance Matrix for a collection of database IDs
 Matrix StandardCovarianceMatrixBuilder.processIds(DBIDs ids, Relation<? extends V> database)
          Compute Covariance Matrix for a collection of database IDs
 PCAFilteredResult PCAFilteredRunner.processIds(DBIDs ids, Relation<? extends V> database)
          Run PCA on a collection of database IDs
<D extends NumberDistance<?,?>>
PCAResult
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Run PCA on a QueryResult Collection
<D extends NumberDistance<?,?>>
PCAFilteredResult
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Run PCA on a QueryResult Collection
<D extends NumberDistance<?,?>>
Matrix
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
           
<D extends NumberDistance<?,?>>
Matrix
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
<D extends NumberDistance<?,?>>
Matrix
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
<D extends NumberDistance<?,?>>
Matrix
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
           
<D extends NumberDistance<?,?>>
Matrix
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
 

Uses of Relation in de.lmu.ifi.dbs.elki.math.spacefillingcurves
 

Constructors in de.lmu.ifi.dbs.elki.math.spacefillingcurves with parameters of type Relation
ZCurve.Transformer(Relation<? extends NumberVector<?,?>> relation, DBIDs ids)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.result
 

Methods in de.lmu.ifi.dbs.elki.result that return types with arguments of type Relation
static List<Relation<?>> ResultUtil.getRelations(Result r)
          Collect all Annotation results from a Result
 

Method parameters in de.lmu.ifi.dbs.elki.result with type arguments of type Relation
private  StringBuffer KMLOutputHandler.makeDescription(Collection<Relation<?>> relations, DBID id)
          Make an HTML description.
 

Uses of Relation in de.lmu.ifi.dbs.elki.result.optics
 

Classes in de.lmu.ifi.dbs.elki.result.optics that implement Relation
(package private)  class ClusterOrderResult.PredecessorAdapter
          Result containing the predecessor ID.
(package private)  class ClusterOrderResult.ReachabilityDistanceAdapter
          Result containing the reachability distances.
 

Uses of Relation in de.lmu.ifi.dbs.elki.result.outlier
 

Fields in de.lmu.ifi.dbs.elki.result.outlier declared as Relation
protected  Relation<Double> OrderingFromRelation.scores
          Outlier scores.
private  Relation<Double> OutlierResult.scores
          Outlier scores.
 

Methods in de.lmu.ifi.dbs.elki.result.outlier that return Relation
 Relation<Double> OutlierResult.getScores()
          Get the outlier scores association.
 

Constructors in de.lmu.ifi.dbs.elki.result.outlier with parameters of type Relation
OrderingFromRelation(Relation<Double> scores)
          Ascending constructor.
OrderingFromRelation(Relation<Double> scores, boolean ascending)
          Constructor for outlier orderings
OutlierResult(OutlierScoreMeta meta, Relation<Double> scores)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.result.textwriter
 

Method parameters in de.lmu.ifi.dbs.elki.result.textwriter with type arguments of type Relation
private  void TextWriter.printObject(TextWriterStream out, Database db, DBID objID, List<Relation<?>> ra)
           
private  void TextWriter.writeClusterResult(Database db, StreamFactory streamOpener, Cluster<?> clus, List<Relation<?>> ra, NamingScheme naming, List<SettingsResult> sr)
           
private  void TextWriter.writeOrderingResult(Database db, StreamFactory streamOpener, OrderingResult or, List<Relation<?>> ra, List<SettingsResult> sr)
           
 

Uses of Relation in de.lmu.ifi.dbs.elki.utilities
 

Fields in de.lmu.ifi.dbs.elki.utilities declared as Relation
(package private)  Relation<? extends O> DatabaseUtil.RelationObjectIterator.database
          The database we use
(package private)  Relation<? extends O> DatabaseUtil.CollectionFromRelation.db
          The database we query
 

Methods in de.lmu.ifi.dbs.elki.utilities that return Relation
static Relation<String> DatabaseUtil.guessLabelRepresentation(Database database)
          Guess a potentially label-like representation.
static Relation<String> DatabaseUtil.guessObjectLabelRepresentation(Database database)
          Guess a potentially object label-like representation.
static
<V extends NumberVector<?,?>,T extends NumberVector<?,?>>
Relation<V>
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
          An ugly vector type cast unavoidable in some situations due to Generics.
 

Methods in de.lmu.ifi.dbs.elki.utilities with parameters of type Relation
static
<V extends FeatureVector<?,?>>
VectorFieldTypeInformation<V>
DatabaseUtil.assumeVectorField(Relation<V> relation)
          Get the dimensionality of a database
static
<V extends NumberVector<? extends V,?>>
V
DatabaseUtil.centroid(Relation<? extends V> relation)
          Returns the centroid as a NumberVector object of the specified database.
static
<V extends NumberVector<? extends V,?>>
V
DatabaseUtil.centroid(Relation<? extends V> relation, DBIDs ids)
          Returns the centroid as a NumberVector object of the specified objects stored in the given database.
static
<V extends NumberVector<? extends V,?>>
V
DatabaseUtil.centroid(Relation<? extends V> relation, DBIDs ids, BitSet dimensions)
          Returns the centroid w.r.t. the dimensions specified by the given BitSet as a NumberVector object of the specified objects stored in the given database.
static
<NV extends NumberVector<NV,?>>
Pair<NV,NV>
DatabaseUtil.computeMinMax(Relation<NV> database)
          Determines the minimum and maximum values in each dimension of all objects stored in the given database.
static
<V extends NumberVector<? extends V,?>>
Matrix
DatabaseUtil.covarianceMatrix(Relation<? extends V> database, DBIDs ids)
          Determines the covariance matrix of the objects stored in the given database.
static int DatabaseUtil.dimensionality(Relation<? extends FeatureVector<?,?>> relation)
          Get the dimensionality of a database
static
<V extends NumberVector<?,?>>
double
DatabaseUtil.exactMedian(Relation<V> relation, DBIDs ids, int dimension)
          Returns the median of a data set in the given dimension.
static
<O> Class<?>
DatabaseUtil.getBaseObjectClassExpensive(Relation<O> database)
          Do a full inspection of the database to find the base object class.
static SortedSet<ClassLabel> DatabaseUtil.getClassLabels(Relation<? extends ClassLabel> database)
          Retrieves all class labels within the database.
static
<V extends FeatureVector<?,?>>
String
DatabaseUtil.getColumnLabel(Relation<? extends V> rel, int col)
          Get the column name or produce a generic label "Column XY".
static
<O> Class<? extends O>
DatabaseUtil.guessObjectClass(Relation<O> database)
          Do a cheap guess at the databases object class.
static
<V extends NumberVector<?,?>>
double
DatabaseUtil.quickMedian(Relation<V> relation, ArrayDBIDs ids, int dimension, int numberOfSamples)
          Returns the median of a data set in the given dimension by using a sampling method.
static
<V extends NumberVector<?,?>,T extends NumberVector<?,?>>
Relation<V>
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
          An ugly vector type cast unavoidable in some situations due to Generics.
static double[] DatabaseUtil.variances(Relation<? extends NumberVector<?,?>> database, NumberVector<?,?> centroid, DBIDs ids)
          Determines the variances in each dimension of the specified objects stored in the given database.
static
<V extends NumberVector<? extends V,?>>
double[]
DatabaseUtil.variances(Relation<V> database)
          Determines the variances in each dimension of all objects stored in the given database.
static
<V extends NumberVector<? extends V,?>>
double[]
DatabaseUtil.variances(Relation<V> database, DBIDs ids)
          Determines the variances in each dimension of the specified objects stored in the given database.
 

Constructors in de.lmu.ifi.dbs.elki.utilities with parameters of type Relation
DatabaseUtil.CollectionFromRelation(Relation<? extends O> db)
          Constructor.
DatabaseUtil.RelationObjectIterator(Iterator<DBID> iter, Relation<? extends O> database)
          Full Constructor.
DatabaseUtil.RelationObjectIterator(Relation<? extends O> database)
          Simplified constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.utilities.referencepoints
 

Methods in de.lmu.ifi.dbs.elki.utilities.referencepoints with parameters of type Relation
<T extends O>
Collection<O>
FullDatabaseReferencePoints.getReferencePoints(Relation<T> db)
           
<T extends O>
Collection<O>
ReferencePointsHeuristic.getReferencePoints(Relation<T> db)
          Get the reference points for the given database.
<T extends V>
Collection<V>
RandomSampleReferencePoints.getReferencePoints(Relation<T> db)
           
<T extends V>
Collection<V>
AxisBasedReferencePoints.getReferencePoints(Relation<T> db)
           
<T extends V>
Collection<V>
RandomGeneratedReferencePoints.getReferencePoints(Relation<T> db)
           
<T extends V>
Collection<V>
GridBasedReferencePoints.getReferencePoints(Relation<T> db)
           
<T extends V>
Collection<V>
StarBasedReferencePoints.getReferencePoints(Relation<T> db)
           
 

Uses of Relation in de.lmu.ifi.dbs.elki.utilities.scaling.outlier
 

Methods in de.lmu.ifi.dbs.elki.utilities.scaling.outlier with parameters of type Relation
private  double[] SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a, double b, ArrayDBIDs ids, BitSet t, Relation<Double> scores)
          M-Step using a modified Levenberg-Marquardt method.
 

Uses of Relation in de.lmu.ifi.dbs.elki.visualization
 

Fields in de.lmu.ifi.dbs.elki.visualization declared as Relation
(package private)  Relation<?> VisualizationTask.relation
          The main representation
 

Methods in de.lmu.ifi.dbs.elki.visualization with type parameters of type Relation
<R extends Relation<?>>
R
VisualizationTask.getRelation()
           
 

Constructors in de.lmu.ifi.dbs.elki.visualization with parameters of type Relation
VisualizationTask(String name, Result result, Relation<?> relation, VisFactory factory)
          Visualization task.
VisualizationTask(String name, VisualizerContext context, Result result, Relation<?> relation, VisFactory factory, Projection proj, SVGPlot svgp, double width, double height)
          Constructor
 

Uses of Relation in de.lmu.ifi.dbs.elki.visualization.gui
 

Fields in de.lmu.ifi.dbs.elki.visualization.gui declared as Relation
(package private)  Relation<ClassLabel> SelectionTableWindow.crep
          Class label representation
(package private)  Relation<String> SelectionTableWindow.orep
          Object label representation
 

Uses of Relation in de.lmu.ifi.dbs.elki.visualization.projector
 

Fields in de.lmu.ifi.dbs.elki.visualization.projector declared as Relation
(package private)  Relation<V> ScatterPlotProjector.rel
          Relation we project
(package private)  Relation<V> HistogramProjector.rel
          Relation we project
 

Methods in de.lmu.ifi.dbs.elki.visualization.projector that return Relation
 Relation<V> ScatterPlotProjector.getRelation()
          The relation we project.
 Relation<V> HistogramProjector.getRelation()
          Get the relation we project.
 

Constructors in de.lmu.ifi.dbs.elki.visualization.projector with parameters of type Relation
HistogramProjector(Relation<V> rel, int maxdim)
          Constructor.
ScatterPlotProjector(Relation<V> rel, int maxdim)
          Constructor.
 

Uses of Relation in de.lmu.ifi.dbs.elki.visualization.scales
 

Methods in de.lmu.ifi.dbs.elki.visualization.scales with parameters of type Relation
static
<O extends NumberVector<?,? extends Number>>
LinearScale[]
Scales.calcScales(Relation<O> db)
          Compute a linear scale for each dimension.
 

Uses of Relation in de.lmu.ifi.dbs.elki.visualization.visualizers
 

Methods in de.lmu.ifi.dbs.elki.visualization.visualizers that return types with arguments of type Relation
static Iterator<Relation<? extends NumberVector<?,?>>> VisualizerUtil.iterateVectorFieldRepresentations(Result result)
          Filter for number vector field representations
 

Uses of Relation in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d declared as Relation
private  Relation<NV> P1DHistogramVisualizer.relation
          The database we visualize
 

Uses of Relation in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d declared as Relation
protected  Relation<NV> P2DVisualization.rel
          The representation we visualize
protected  Relation<PolygonsObject> PolygonVisualization.rep
          The representation we visualize
private  Relation<? extends Number> TooltipScoreVisualization.result
          Number value to visualize
private  Relation<?> TooltipStringVisualization.result
          Number value to visualize
 


Release 0.4.0 (2011-09-20_1324)