|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredResult
public class PCAFilteredResult
Result class for a filtered PCA. This differs from regular PCA by having the Eigenvalues and Eigenvectors separated into "strong" and "weak" Eigenvectors, and thus a dimension. Usually this will be interpreted as having a "data" subspace and an "error" subspace.
Field Summary | |
---|---|
private Matrix |
adapatedStrongEigenvectors
The diagonal matrix of adapted strong eigenvalues: eigenvectors * e_czech. |
private Matrix |
e_czech
The selection matrix of the strong eigenvectors. |
private Matrix |
e_hat
The selection matrix of the weak eigenvectors. |
private double |
explainedVariance
The amount of Variance explained by strong Eigenvalues |
private Matrix |
m_czech
The dissimilarity matrix. |
private Matrix |
m_hat
The similarity matrix. |
private double[] |
strongEigenvalues
The strong eigenvalues. |
private Matrix |
strongEigenvectors
The strong eigenvectors to their corresponding filtered eigenvalues. |
private double[] |
weakEigenvalues
The weak eigenvalues. |
private Matrix |
weakEigenvectors
The weak eigenvectors to their corresponding filtered eigenvalues. |
Constructor Summary | |
---|---|
PCAFilteredResult(SortedEigenPairs eigenPairs,
FilteredEigenPairs filteredEigenPairs,
double big,
double small)
Construct a result object for the filtered PCA result. |
Method Summary | |
---|---|
Matrix |
adapatedStrongEigenvectors()
Returns a copy of the adapted strong eigenvectors. |
Matrix |
dissimilarityMatrix()
Returns a copy of the dissimilarity matrix (M_czech) of this LocalPCA. |
int |
getCorrelationDimension()
Get correlation (subspace) dimensionality |
double |
getExplainedVariance()
Returns explained variance |
double[] |
getStrongEigenvalues()
Returns a copy of the strong eigenvalues of the object after passing the eigen pair filter. |
Matrix |
getStrongEigenvectors()
Returns a copy of the matrix of strong eigenvectors after passing the eigen pair filter. |
double[] |
getWeakEigenvalues()
Returns a copy of the weak eigenvalues of the object after passing the eigen pair filter. |
Matrix |
getWeakEigenvectors()
Returns a copy of the matrix of weak eigenvectors after passing the eigen pair filter. |
Matrix |
selectionMatrixOfStrongEigenvectors()
Returns a copy of the selection matrix of the strong eigenvectors (E_czech) of this LocalPCA. |
Matrix |
selectionMatrixOfWeakEigenvectors()
Returns a copy of the selection matrix of the weak eigenvectors (E_hat) of the object to which this PCA belongs to. |
Matrix |
similarityMatrix()
Returns a copy of the similarity matrix (M_hat) of this LocalPCA. |
Methods inherited from class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult |
---|
getEigenPairs, getEigenvalues, getEigenvectors, length |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
private double[] strongEigenvalues
private Matrix strongEigenvectors
private double[] weakEigenvalues
private Matrix weakEigenvectors
private double explainedVariance
private Matrix e_hat
private Matrix e_czech
private Matrix m_hat
private Matrix m_czech
private Matrix adapatedStrongEigenvectors
Constructor Detail |
---|
public PCAFilteredResult(SortedEigenPairs eigenPairs, FilteredEigenPairs filteredEigenPairs, double big, double small)
eigenPairs
- All EigenPairsfilteredEigenPairs
- filtered EigenPairsbig
- large value in selection matrixsmall
- small value in selection matrixMethod Detail |
---|
public final Matrix getStrongEigenvectors()
public final double[] getStrongEigenvalues()
public final Matrix getWeakEigenvectors()
public final double[] getWeakEigenvalues()
public final int getCorrelationDimension()
getCorrelationDimension
in interface ProjectionResult
public double getExplainedVariance()
public Matrix selectionMatrixOfWeakEigenvectors()
public Matrix selectionMatrixOfStrongEigenvectors()
public Matrix similarityMatrix()
similarityMatrix
in interface ProjectionResult
public Matrix dissimilarityMatrix()
public Matrix adapatedStrongEigenvectors()
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |