| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki | ELKI framework "Environment for Developing KDD-Applications Supported by Index-Structures"
 
   KDDTaskis the main class of the ELKI-Framework
  for command-line interaction. | 
| de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the  KDDTaskmain routine. | 
| de.lmu.ifi.dbs.elki.algorithm.benchmark | Benchmarking pseudo algorithms. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | Generalized DBSCAN. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | K-means clustering and variations. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected clustering algorithms or
 subspace clustering algorithms according to the classical but somewhat obsolete classification schema
 of clustering algorithms for axis-parallel subspaces. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings
 
 These methods are mostly useful for providing a reference result in evaluation. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood | Spatial outlier neighborhood classes | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted | Weighted Neighborhood definitions. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | Subspace outlier detection methods. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.trivial | Trivial outlier detection algorithms: no outliers, all outliers, label outliers. | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | Statistical analysis algorithms
 
  The algorithms in this package perform statistical analysis of the data
  (e.g. compute distributions, distance distributions etc.) | 
| de.lmu.ifi.dbs.elki.application | Base classes for stand alone applications. | 
| de.lmu.ifi.dbs.elki.application.cache | Utility applications for the persistence layer such as distance cache builders. | 
| de.lmu.ifi.dbs.elki.application.geo | Application for exploring geo data. | 
| de.lmu.ifi.dbs.elki.application.greedyensemble | Greedy ensembles for outlier detection. | 
| de.lmu.ifi.dbs.elki.application.jsmap | JavaScript based map client - server architecture. | 
| de.lmu.ifi.dbs.elki.application.visualization | Visualization applications in ELKI. | 
| de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. | 
| de.lmu.ifi.dbs.elki.data.images | Package for processing image data (e.g. compute color histograms) | 
| de.lmu.ifi.dbs.elki.database | ELKI database layer - loading, storing, indexing and accessing data | 
| de.lmu.ifi.dbs.elki.datasource | Data normalization (and reconstitution) of data sets. | 
| de.lmu.ifi.dbs.elki.datasource.filter.normalization | Data normalization. | 
| de.lmu.ifi.dbs.elki.datasource.parser | Parsers for different file formats and data types. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | Distance functions deriving distances from e.g. similarity measures | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | Distance functions using correlations. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.external | Distance functions using external data sources. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.geo | Geographic (earth) distance functions. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | Distance functions based on subspaces. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries | Distance functions designed for time series. | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction | Similarity functions. | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | Kernel functions. | 
| de.lmu.ifi.dbs.elki.gui.minigui | A very simple UI to build ELKI command lines. | 
| de.lmu.ifi.dbs.elki.index | Index structure implementations | 
| de.lmu.ifi.dbs.elki.index.preprocessed | Index structure based on preprocessors | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. | 
| de.lmu.ifi.dbs.elki.index.preprocessed.localpca | Index using a preprocessed local PCA. | 
| de.lmu.ifi.dbs.elki.index.preprocessed.preference | Indexes storing preference vectors. | 
| de.lmu.ifi.dbs.elki.index.preprocessed.snn | Indexes providing nearest neighbor sets | 
| de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | Index using a preprocessed local subspaces. | 
| de.lmu.ifi.dbs.elki.index.tree | Tree-based index structures | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants | M-Tree and variants. | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees | Metrical index structures based on the concepts of the M-Tree
 supporting processing of reverse k nearest neighbor queries by
 using the k-nn distances of the entries. | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants | R*-Tree and variants. | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.bulk | Packages for bulk-loading R*-Trees. | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.insert | Insertion strategies for R-Trees | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.split | Splitting strategies for R-Trees | 
| de.lmu.ifi.dbs.elki.index.vafile | Vector Approximation File | 
| de.lmu.ifi.dbs.elki.math.dimensionsimilarity | Functions to compute the similarity of dimensions (or the interestingness of the combination). | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. | 
| de.lmu.ifi.dbs.elki.math.statistics.tests | Statistical tests. | 
| de.lmu.ifi.dbs.elki.result | Result types, representation and handling | 
| de.lmu.ifi.dbs.elki.utilities.ensemble | Utility classes for simple ensembles. | 
| de.lmu.ifi.dbs.elki.utilities.referencepoints | Package containing strategies to obtain reference points
 
 Shared code for various algorithms that use reference points. | 
| de.lmu.ifi.dbs.elki.utilities.scaling | Scaling functions: linear, logarithmic, gamma, clipping, ... | 
| de.lmu.ifi.dbs.elki.utilities.scaling.outlier | Scaling of Outlier scores, that require a statistical analysis of the occurring values | 
| de.lmu.ifi.dbs.elki.visualization | Visualization package of ELKI. | 
| de.lmu.ifi.dbs.elki.visualization.gui | Package to provide a visualization GUI. | 
| de.lmu.ifi.dbs.elki.visualization.projector | Projectors are responsible for finding appropriate projections for data relations. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers | Visualizers for various results | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.histogram | Visualizers based on 1D projected histograms. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.optics | Visualizers that do work on OPTICS plots | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments | Visualizers for inspecting cluster differences using pair counting segments. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.parallel | Visualizers based on parallel coordinates. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster | Visualizers for clustering results based on parallel coordinates. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.index | Visualizers for index structure based on parallel coordinates. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection | Visualizers for object selection based on parallel projections. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot | Visualizers based on scatterplots. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster | Visualizers for clustering results based on 2D projections. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.density | Visualizers for data set density in a scatterplot projection. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.index | Visualizers for index structures based on 2D projections. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier | Visualizers for outlier scores based on 2D projections. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection | Visualizers for object selection based on 2D projections. | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj | Visualizers that do not use a particular projection. | 
| de.lmu.ifi.dbs.elki.workflow | Work flow packages, e.g. following the usual KDD model, closely related to CRISP-DM | 
| tutorial.clustering | Classes from the tutorial on implementing a custom k-means variation. | 
| tutorial.distancefunction | Classes from the tutorial on implementing distance functions. | 
| tutorial.outlier | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KDDTaskProvides a KDDTask that can be used to perform any algorithm implementing
  Algorithmusing any DatabaseConnection implementingDatabaseConnection. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | Algorithm
 Specifies the requirements for any algorithm that is to be executable by the
 main class. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractAlgorithm<R extends Result>
 This class serves also as a model of implementing an algorithm within this
 framework. | 
| class  | AbstractDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>Provides an abstract algorithm already setting the distance function. | 
| class  | AbstractPrimitiveDistanceBasedAlgorithm<O,D extends Distance<?>,R extends Result>Provides an abstract algorithm already setting the distance function. | 
| class  | APRIORIProvides the APRIORI algorithm for Mining Association Rules. | 
| class  | DependencyDerivator<V extends NumberVector<?>,D extends Distance<D>>
 Dependency derivator computes quantitatively linear dependencies among
 attributes of a given dataset based on a linear correlation PCA. | 
| class  | DummyAlgorithm<O extends NumberVector<?>>Dummy algorithm, which just iterates over all points once, doing a 10NN query
 each. | 
| class  | KNNDistanceOrder<O,D extends Distance<D>>Provides an order of the kNN-distances for all objects within the database. | 
| class  | KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>Joins in a given spatial database to each object its k-nearest neighbors. | 
| class  | MaterializeDistances<O,D extends NumberDistance<D,?>>Algorithm to materialize all the distances in a data set. | 
| class  | NullAlgorithmNull Algorithm, which does nothing. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KNNBenchmarkAlgorithm<O,D extends Distance<D>>Benchmarking algorithm that computes the k nearest neighbors for each query
 point. | 
| class  | RangeQueryBenchmarkAlgorithm<O extends NumberVector<?>,D extends NumberDistance<D,?>>Benchmarking algorithm that computes a range query for each point. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ClusteringAlgorithm<C extends Clustering<? extends Model>>Interface for Algorithms that are capable to provide a  Clusteringas Result. in general, clustering algorithms are supposed to
 implement theAlgorithm-Interface. | 
| interface  | OPTICSTypeAlgorithm<D extends Distance<D>>Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector<?>> | 
| class  | AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<?>>Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. | 
| class  | DBSCAN<O,D extends Distance<D>>DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
 sets in a database. | 
| class  | DeLiClu<NV extends NumberVector<?>,D extends Distance<D>>DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
 density-connected sets in a database. | 
| class  | EM<V extends NumberVector<?>>Provides the EM algorithm (clustering by expectation maximization). | 
| class  | NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>Mean-shift based clustering algorithm. | 
| class  | OPTICS<O,D extends Distance<D>>OPTICS provides the OPTICS algorithm. | 
| class  | OPTICSXi<N extends NumberDistance<N,?>>Class to handle OPTICS Xi extraction. | 
| class  | SLINK<O,D extends Distance<D>>Implementation of the efficient Single-Link Algorithm SLINK of R. | 
| class  | SNNClustering<O>
 Shared nearest neighbor clustering. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CASH<V extends NumberVector<?>>Provides the CASH algorithm, an subspace clustering algorithm based on the
 Hough transform. | 
| class  | COPAC<V extends NumberVector<?>,D extends Distance<D>>Provides the COPAC algorithm, an algorithm to partition a database according
 to the correlation dimension of its objects and to then perform an arbitrary
 clustering algorithm over the partitions. | 
| class  | ERiC<V extends NumberVector<?>>Performs correlation clustering on the data partitioned according to local
 correlation dimensionality and builds a hierarchy of correlation clusters
 that allows multiple inheritance from the clustering result. | 
| class  | FourC<V extends NumberVector<?>>4C identifies local subgroups of data objects sharing a uniform correlation. | 
| class  | HiCO<V extends NumberVector<?>>Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
 of correlation clusters. | 
| class  | LMCLUSLinear manifold clustering in high dimensional spaces by stochastic search. | 
| class  | ORCLUS<V extends NumberVector<?>>ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
 dimensional spaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | GeneralizedDBSCANGeneralized DBSCAN, density-based clustering with noise. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>Abstract base class for k-means implementations. | 
| class  | KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using Lloyd-style bulk iterations. | 
| class  | KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>Provides the k-means algorithm, using MacQueen style incremental updates. | 
| class  | KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>>Provides the k-medians clustering algorithm, using Lloyd-style bulk
 iterations. | 
| class  | KMedoidsEM<V,D extends NumberDistance<D,?>>Provides the k-medoids clustering algorithm, using a "bulk" variation of the
 "Partitioning Around Medoids" approach. | 
| class  | KMedoidsPAM<V,D extends NumberDistance<D,?>>Provides the k-medoids clustering algorithm, using the
 "Partitioning Around Medoids" approach. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | SubspaceClusteringAlgorithm<M extends SubspaceModel<?>>Interface for subspace clustering algorithms that use a model derived from
  SubspaceModel, that can then be post-processed for outlier detection. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CLIQUE<V extends NumberVector<?>>
 Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
 dense clusters in subspaces of maximum dimensionality. | 
| class  | DiSH<V extends NumberVector<?>>
 Algorithm for detecting subspace hierarchies. | 
| class  | HiSC<V extends NumberVector<?>>Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
 of subspace clusters. | 
| class  | PreDeCon<V extends NumberVector<?>>
 PreDeCon computes clusters of subspace preference weighted connected points. | 
| class  | PROCLUS<V extends NumberVector<?>>
 Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
 high dimensional spaces. | 
| class  | SUBCLU<V extends NumberVector<?>>
 Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
 shaped and positioned clusters in subspaces. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ByLabelClusteringPseudo clustering using labels. | 
| class  | ByLabelHierarchicalClusteringPseudo clustering using labels. | 
| class  | ByLabelOrAllInOneClusteringTrivial class that will try to cluster by label, and fall back to an
 "all-in-one" clustering. | 
| class  | ByModelClusteringPseudo clustering using annotated models. | 
| class  | TrivialAllInOneTrivial pseudo-clustering that just considers all points to be one big
 cluster. | 
| class  | TrivialAllNoiseTrivial pseudo-clustering that just considers all points to be noise. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | OutlierAlgorithmGeneric super interface for outlier detection algorithms. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ABOD<V extends NumberVector<?>>Angle-Based Outlier Detection
 
 Outlier detection using variance analysis on angles, especially for high
 dimensional data sets. | 
| class  | AbstractAggarwalYuOutlier<V extends NumberVector<?>>Abstract base class for the sparse-grid-cell based outlier detection of
 Aggarwal and Yu. | 
| class  | AbstractDBOutlier<O,D extends Distance<D>>Simple distance based outlier detection algorithms. | 
| class  | AggarwalYuEvolutionary<V extends NumberVector<?>>EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
 detect outliers for high dimensional data. | 
| class  | AggarwalYuNaive<V extends NumberVector<?>>BruteForce provides a naive brute force algorithm in which all k-subsets of
 dimensions are examined and calculates the sparsity coefficient to find
 outliers. | 
| class  | ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "approximate Local Correlation Integral". | 
| class  | COP<V extends NumberVector<?>,D extends NumberDistance<D,?>>Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
 Subspaces
 
 
 Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. | 
| class  | DBOutlierDetection<O,D extends Distance<D>>Simple distanced based outlier detection algorithm. | 
| class  | DBOutlierScore<O,D extends Distance<D>>Compute percentage of neighbors in the given neighborhood with size d. | 
| class  | EMOutlier<V extends NumberVector<?>>outlier detection algorithm using EM Clustering. | 
| class  | GaussianModel<V extends NumberVector<?>>Outlier have smallest GMOD_PROB: the outlier scores is the
 probability density of the assumed distribution. | 
| class  | GaussianUniformMixture<V extends NumberVector<?>>Outlier detection algorithm using a mixture model approach. | 
| class  | HilOut<O extends NumberVector<?>>Fast Outlier Detection in High Dimensional Spaces
 
 Outlier Detection using Hilbert space filling curves
 
 Reference:
 
 F. | 
| class  | INFLO<O,D extends NumberDistance<D,?>>INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
 Outliers using Symmetric Relationship
 
 Reference:  Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. | 
| class  | KNNOutlier<O,D extends NumberDistance<D,?>>
 Outlier Detection based on the distance of an object to its k nearest
 neighbor. | 
| class  | KNNWeightOutlier<O,D extends NumberDistance<D,?>>Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. | 
| class  | LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>>Outlier Detection with Kernel Density Functions. | 
| class  | LDOF<O,D extends NumberDistance<D,?>>
 Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. | 
| class  | LOCI<O,D extends NumberDistance<D,?>>Fast Outlier Detection Using the "Local Correlation Integral". | 
| class  | LOF<O,D extends NumberDistance<D,?>>
 Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  LOF.K_ID(-lof.k). | 
| class  | LoOP<O,D extends NumberDistance<D,?>>LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. | 
| class  | OnlineLOF<O,D extends NumberDistance<D,?>>Incremental version of the  LOFAlgorithm, supports insertions and
 removals. | 
| class  | OPTICSOF<O,D extends NumberDistance<D,?>>OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
 Outliers in a database. | 
| class  | ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>>
 provides the Reference-Based Outlier Detection algorithm, an algorithm that
 computes kNN distances approximately, using reference points. | 
| class  | SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>>Algorithm to compute local correlation outlier probability. | 
| class  | SimpleKernelDensityLOF<O extends NumberVector<?>,D extends NumberDistance<D,?>>A simple variant of the LOF algorithm, which uses a simple kernel density
 estimation instead of the local reachability density. | 
| class  | SimpleLOF<O,D extends NumberDistance<D,?>>A simplified version of the original LOF algorithm, which does not use the
 reachability distance, yielding less stable results on inliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ExternalDoubleOutlierScoreExternal outlier detection scores, loading outlier scores from an external
 file. | 
| class  | FeatureBaggingA simple ensemble method called "Feature bagging" for outlier detection. | 
| class  | HiCS<V extends NumberVector<?>>Algorithm to compute High Contrast Subspaces for Density-Based Outlier
 Ranking. | 
| class  | RescaleMetaOutlierAlgorithmScale another outlier score using the given scaling function. | 
| class  | SimpleOutlierEnsembleSimple outlier ensemble method. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>Abstract base class for distance-based spatial outlier detection methods. | 
| class  | AbstractNeighborhoodOutlier<O>Abstract base class for spatial outlier detection methods using a spatial
 neighborhood. | 
| class  | CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>>GLS-Backward Search is a statistical approach to detecting spatial outliers. | 
| class  | CTLuMeanMultipleAttributes<N,O extends NumberVector<?>>Mean Approach is used to discover spatial outliers with multiple attributes. | 
| class  | CTLuMedianAlgorithm<N>Median Algorithm of C. | 
| class  | CTLuMedianMultipleAttributes<N,O extends NumberVector<?>>Median Approach is used to discover spatial outliers with multiple
 attributes. | 
| class  | CTLuMoranScatterplotOutlier<N>Moran scatterplot outliers, based on the standardized deviation from the
 local and global means. | 
| class  | CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>Spatial outlier detection based on random walks. | 
| class  | CTLuScatterplotOutlier<N>Scatterplot-outlier is a spatial outlier detection method that performs a
 linear regression of object attributes and their neighbors average value. | 
| class  | CTLuZTestOutlier<N>Detect outliers by comparing their attribute value to the mean and standard
 deviation of their neighborhood. | 
| class  | SLOM<N,O,D extends NumberDistance<D,?>>SLOM: a new measure for local spatial outliers
 
 
 Reference: Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. | 
| class  | SOF<N,O,D extends NumberDistance<D,?>>The Spatial Outlier Factor (SOF) is a spatial
  LOFvariation. | 
| class  | TrimmedMeanApproach<N>A Trimmed Mean Approach to Finding Spatial Outliers. | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | NeighborSetPredicate.Factory<O>Factory interface to produce instances. | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | AbstractPrecomputedNeighborhood.Factory<O>Factory class. | 
| static class  | ExtendedNeighborhood.Factory<O>Factory class. | 
| static class  | ExternalNeighborhood.FactoryFactory class. | 
| static class  | PrecomputedKNearestNeighborNeighborhood.Factory<O,D extends Distance<D>>Factory class to instantiate for a particular relation. | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | WeightedNeighborSetPredicate.Factory<O>Factory interface to produce instances. | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | LinearWeightedExtendedNeighborhood.Factory<O>Factory class. | 
| static class  | UnweightedNeighborhoodAdapter.Factory<O>Factory class | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OutRankS1OutRank: ranking outliers in high dimensional data. | 
| class  | OUTRES<V extends NumberVector<?>>Adaptive outlierness for subspace outlier ranking (OUTRES). | 
| class  | SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>>Subspace Outlier Degree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ByLabelOutlierTrivial algorithm that marks outliers by their label. | 
| class  | TrivialAllOutlierTrivial method that claims all objects to be outliers. | 
| class  | TrivialGeneratedOutlierExtract outlier score from the model the objects were generated by. | 
| class  | TrivialNoOutlierTrivial method that claims to find no outliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AddSingleScalePseudo "algorithm" that computes the global min/max for a relation across all
 attributes. | 
| class  | AveragePrecisionAtK<V,D extends NumberDistance<D,?>>Evaluate a distance functions performance by computing the average precision
 at k, when ranking the objects by distance. | 
| class  | DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>Algorithm to gather statistics over the distance distribution in the data
 set. | 
| class  | EvaluateRankingQuality<V extends NumberVector<?>,D extends NumberDistance<D,?>>Evaluate a distance function with respect to kNN queries. | 
| class  | RankingQualityHistogram<O,D extends NumberDistance<D,?>>Evaluate a distance function with respect to kNN queries. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractApplicationAbstractApplication sets the values for flags verbose and help. | 
| class  | ComputeSingleColorHistogramApplication that computes the color histogram vector for a single image. | 
| class  | ConvertToBundleApplicationConvert an input file to the more efficient ELKI bundle format. | 
| class  | GeneratorXMLSpecGenerate a data set based on a specified model (using an XML specification) | 
| class  | KDDCLIApplicationProvides a KDDCLIApplication that can be used to perform any algorithm
 implementing  Algorithmusing any DatabaseConnection
 implementingDatabaseConnection. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>Wrapper to convert a traditional text-serialized result into a on-disk matrix
 for random access. | 
| class  | CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>Wrapper to convert a traditional text-serialized result into a on-disk matrix
 for random access. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | VisualizeGeodesicDistancesVisualization function for Cross-track distance function
 
 TODO: make resolution configurable. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ComputeKNNOutlierScores<O,D extends NumberDistance<D,?>>Application that runs a series of kNN-based algorithms on a data set, for
 building an ensemble in a second step. | 
| class  | GreedyEnsembleExperimentClass to load an outlier detection summary file, as produced by
  ComputeKNNOutlierScores, and compute a naive ensemble for it. | 
| class  | VisualizePairwiseGainMatrixClass to load an outlier detection summary file, as produced by
  ComputeKNNOutlierScores, and compute a matrix with the pairwise
 gains. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | JSONResultHandlerHandle results by serving them via a web server to mapping applications. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KNNExplorer<O extends NumberVector<?>,D extends NumberDistance<D,?>>User application to explore the k Nearest Neighbors for a given data set and
 distance function. | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | FeatureVector.Factory<V extends FeatureVector<? extends D>,D>Factory API for this feature vector. | 
| static interface  | NumberVector.Factory<V extends NumberVector<? extends N>,N extends Number>Factory API for this feature vector. | 
| static interface  | SparseNumberVector.Factory<V extends SparseNumberVector<N>,N extends Number>Factory for sparse number vectors: make from a dim-value map. | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | AbstractNumberVector.Factory<V extends AbstractNumberVector<N>,N extends Number>Factory class. | 
| static class  | BitVector.FactoryFactory for bit vectors. | 
| static class  | DoubleVector.FactoryFactory for Double vectors. | 
| static class  | FloatVector.FactoryFactory for float vectors. | 
| static class  | IntegerVector.FactoryFactory for integer vectors. | 
| static class  | OneDimensionalDoubleVector.FactoryFactory class. | 
| static class  | SparseDoubleVector.FactoryFactory class. | 
| static class  | SparseFloatVector.FactoryFactory class. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ComputeColorHistogramInterface for color histogram implementations. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractComputeColorHistogramAbstract class for color histogram computation. | 
| class  | ComputeHSBColorHistogramCompute color histograms in a Hue-Saturation-Brightness model. | 
| class  | ComputeNaiveHSBColorHistogramCompute color histograms in a Hue-Saturation-Brightness model. | 
| class  | ComputeNaiveRGBColorHistogramCompute a (rather naive) RGB color histogram. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HashmapDatabaseProvides a mapping for associations based on a Hashtable and functions to get
 the next usable ID for insertion, making IDs reusable after deletion of the
 entry. | 
| class  | StaticArrayDatabaseThis database class uses array-based storage and thus does not allow for
 dynamic insert, delete and update operations. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | DatabaseConnectionDatabaseConnection is used to load data into a database. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractDatabaseConnectionAbstract super class for all database connections. | 
| class  | ArrayAdapterDatabaseConnectionImport an existing data matrix ( double[rows][cols]) into an ELKI
 database. | 
| class  | BundleDatabaseConnectionClass to load a database from a bundle file. | 
| class  | ConcatenateFilesDatabaseConnectionDatabase that will loading multiple files, concatenating the results. | 
| class  | DBIDRangeDatabaseConnectionThis is a fake datasource that produces a static DBID range only. | 
| class  | EmptyDatabaseConnectionPseudo database that is empty. | 
| class  | ExternalIDJoinDatabaseConnectionJoins multiple data sources by their label | 
| class  | FileBasedDatabaseConnectionProvides a file based database connection based on the parser to be set. | 
| class  | GeneratorXMLDatabaseConnectionData source from an XML specification. | 
| class  | InputStreamDatabaseConnectionProvides a database connection expecting input from an input stream such as
 stdin. | 
| class  | LabelJoinDatabaseConnectionJoins multiple data sources by their label | 
| class  | PresortedBlindJoinDatabaseConnectionJoins multiple data sources by their existing order. | 
| class  | RandomDoubleVectorDatabaseConnectionProduce a database of random double vectors with each dimension in [0:1]. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | Normalization<O>Normalization performs a normalization on a set of feature vectors and is
 capable to transform a set of feature vectors to the original attribute
 ranges. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractNormalization<O extends NumberVector<?>>Abstract super class for all normalizations. | 
| class  | AbstractStreamNormalization<O extends NumberVector<?>>Abstract super class for all normalizations. | 
| class  | AttributeWiseErfNormalization<O extends NumberVector<?>>Attribute-wise Normalization using the error function. | 
| class  | AttributeWiseMinMaxNormalization<V extends NumberVector<?>>Class to perform and undo a normalization on real vectors with respect to
 given minimum and maximum in each dimension. | 
| class  | AttributeWiseVarianceNormalization<V extends NumberVector<?>>Class to perform and undo a normalization on real vectors with respect to
 given mean and standard deviation in each dimension. | 
| class  | InverseDocumentFrequencyNormalization<V extends SparseNumberVector<?>>Normalization for text frequency vectors, using the inverse document
 frequency. | 
| class  | LengthNormalization<V extends NumberVector<?>>Class to perform a normalization on vectors to norm 1. | 
| class  | TFIDFNormalization<V extends SparseNumberVector<?>>Perform full TF-IDF Normalization as commonly used in text mining. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ParserA Parser shall provide a ParsingResult by parsing an InputStream. | 
| interface  | StreamingParserInterface for streaming parsers, that may be much more efficient in
 combination with filters. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractStreamingParserBase class for streaming parsers. | 
| class  | ArffParserParser to load WEKA .arff files into ELKI. | 
| class  | BitVectorLabelParserProvides a parser for parsing one BitVector per line, bits separated by
 whitespace. | 
| class  | DoubleVectorLabelParserDeprecated. 
 Use NumberVectorLabelParser instead, which defaults to DoubleVector. | 
| class  | FloatVectorLabelParserDeprecated. 
 Use NumberVectorLabelParser instead, and use vector type FloatVector. | 
| class  | NumberVectorLabelParser<V extends NumberVector<?>>
 Provides a parser for parsing one point per line, attributes separated by
 whitespace. | 
| class  | SimplePolygonParserParser to load polygon data (2D and 3D only) from a simple format. | 
| class  | SparseBitVectorLabelParserProvides a parser for parsing one sparse BitVector per line, where the
 indices of the one-bits are separated by whitespace. | 
| class  | SparseFloatVectorLabelParserDeprecated. 
 Use  SparseNumberVectorLabelParserinstead! | 
| class  | SparseNumberVectorLabelParser<V extends SparseNumberVector<?>>
 Provides a parser for parsing one point per line, attributes separated by
 whitespace. | 
| class  | TermFrequencyParser<V extends SparseNumberVector<?>>A parser to load term frequency data, which essentially are sparse vectors
 with text keys. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | DBIDDistanceFunction<D extends Distance<?>>Distance functions valid in a database context only (i.e. for DBIDs)
 
 For any "distance" that cannot be computed for arbitrary objects, only those
 that exist in the database and referenced by their ID. | 
| interface  | DistanceFunction<O,D extends Distance<?>>Base interface for any kind of distances. | 
| interface  | DoubleNorm<O>Interface for norms in the double domain. | 
| interface  | FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>Interface for local PCA based preprocessors. | 
| interface  | IndexBasedDistanceFunction<O,D extends Distance<D>>Distance function relying on an index (such as preprocessed neighborhoods). | 
| interface  | Norm<O,D extends Distance<D>>Abstract interface for a mathematical norm. | 
| interface  | NumberVectorDistanceFunction<D extends Distance<D>>Base interface for the common case of distance functions defined on numerical vectors. | 
| interface  | PrimitiveDistanceFunction<O,D extends Distance<?>>Primitive distance function that is defined on some kind of object. | 
| interface  | PrimitiveDoubleDistanceFunction<O>Interface for distance functions that can provide a raw double value. | 
| interface  | SpatialPrimitiveDistanceFunction<V extends SpatialComparable,D extends Distance<D>>API for a spatial primitive distance function. | 
| interface  | SpatialPrimitiveDoubleDistanceFunction<V extends SpatialComparable>Interface combining spatial primitive distance functions with primitive
 number distance functions. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractDatabaseDistanceFunction<O,D extends Distance<D>>Abstract super class for distance functions needing a database context. | 
| class  | AbstractDBIDDistanceFunction<D extends Distance<D>>AbstractDistanceFunction provides some methods valid for any extending class. | 
| class  | AbstractIndexBasedDistanceFunction<O,I extends Index,D extends Distance<D>>Abstract super class for distance functions needing a database index. | 
| class  | AbstractPrimitiveDistanceFunction<O,D extends Distance<D>>AbstractDistanceFunction provides some methods valid for any extending class. | 
| class  | AbstractVectorDoubleDistanceFunctionAbstract base class for the most common family of distance functions: defined
 on number vectors and returning double values. | 
| class  | AbstractVectorDoubleDistanceNormAbstract base class for double-valued number-vector-based distances based on
 norms. | 
| class  | ArcCosineDistanceFunctionCosine distance function for feature vectors. | 
| class  | CanberraDistanceFunctionCanberra distance function, a variation of Manhattan distance. | 
| class  | CosineDistanceFunctionCosine distance function for feature vectors. | 
| class  | EuclideanDistanceFunctionProvides the Euclidean distance for FeatureVectors. | 
| class  | JeffreyDivergenceDistanceFunctionProvides the Jeffrey Divergence Distance for FeatureVectors. | 
| class  | LocallyWeightedDistanceFunction<V extends NumberVector<?>>Provides a locally weighted distance function. | 
| class  | LPNormDistanceFunctionProvides a LP-Norm for FeatureVectors. | 
| class  | ManhattanDistanceFunctionManhattan distance function to compute the Manhattan distance for a pair of
 FeatureVectors. | 
| class  | MaximumDistanceFunctionMaximum distance function to compute the Maximum distance for a pair of
 FeatureVectors. | 
| class  | MinimumDistanceFunctionMaximum distance function to compute the Minimum distance for a pair of
 FeatureVectors. | 
| class  | MinKDistance<O,D extends Distance<D>>A distance that is at least the distance to the kth nearest neighbor. | 
| class  | ProxyDistanceFunction<O,D extends Distance<D>>Distance function to proxy computations to another distance (that probably
 was run before). | 
| class  | RandomStableDistanceFunctionThis is a dummy distance providing random values (obviously not metrical),
 useful mostly for unit tests and baseline evaluations: obviously this
 distance provides no benefit whatsoever. | 
| class  | SharedNearestNeighborJaccardDistanceFunction<O>SharedNearestNeighborJaccardDistanceFunction computes the Jaccard
 coefficient, which is a proper distance metric. | 
| class  | SparseEuclideanDistanceFunctionEuclidean distance function. | 
| class  | SparseLPNormDistanceFunctionProvides a LP-Norm for FeatureVectors. | 
| class  | SparseManhattanDistanceFunctionManhattan distance function. | 
| class  | SparseMaximumDistanceFunctionMaximum distance function. | 
| class  | SquaredEuclideanDistanceFunctionProvides the squared Euclidean distance for FeatureVectors. | 
| class  | WeightedDistanceFunctionProvides the Weighted distance for feature vectors. | 
| class  | WeightedLPNormDistanceFunctionWeighted version of the Euclidean distance function. | 
| class  | WeightedSquaredEuclideanDistanceFunctionProvides the squared Euclidean distance for FeatureVectors. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractSimilarityAdapter<O>Adapter from a normalized similarity function to a distance function. | 
| class  | SimilarityAdapterArccos<O>Adapter from a normalized similarity function to a distance function using
  arccos(sim). | 
| class  | SimilarityAdapterLinear<O>Adapter from a normalized similarity function to a distance function using
  1 - sim. | 
| class  | SimilarityAdapterLn<O>Adapter from a normalized similarity function to a distance function using
  -log(sim). | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HistogramIntersectionDistanceFunctionIntersection distance for color histograms. | 
| class  | HSBHistogramQuadraticDistanceFunctionDistance function for HSB color histograms based on a quadratic form and
 color similarity. | 
| class  | RGBHistogramQuadraticDistanceFunctionDistance function for RGB color histograms based on a quadratic form and
 color similarity. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ERiCDistanceFunctionProvides a distance function for building the hierarchy in the ERiC
 algorithm. | 
| class  | PCABasedCorrelationDistanceFunctionProvides the correlation distance for real valued vectors. | 
| class  | PearsonCorrelationDistanceFunctionPearson correlation distance function for feature vectors. | 
| class  | SquaredPearsonCorrelationDistanceFunctionSquared Pearson correlation distance function for feature vectors. | 
| class  | WeightedPearsonCorrelationDistanceFunctionPearson correlation distance function for feature vectors. | 
| class  | WeightedSquaredPearsonCorrelationDistanceFunctionSquared Pearson correlation distance function for feature vectors. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DiskCacheBasedDoubleDistanceFunctionProvides a DistanceFunction that is based on double distances given by a
 distance matrix of an external file. | 
| class  | DiskCacheBasedFloatDistanceFunctionProvides a DistanceFunction that is based on float distances given by a
 distance matrix of an external file. | 
| class  | FileBasedDoubleDistanceFunctionProvides a DistanceFunction that is based on double distances given by a
 distance matrix of an external file. | 
| class  | FileBasedFloatDistanceFunctionProvides a DistanceFunction that is based on float distances given by a
 distance matrix of an external file. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DimensionSelectingLatLngDistanceFunctionDistance function for 2D vectors in Latitude, Longitude form. | 
| class  | LatLngDistanceFunctionDistance function for 2D vectors in Latitude, Longitude form. | 
| class  | LngLatDistanceFunctionDistance function for 2D vectors in Longitude, Latitude form. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | DimensionSelectingSubspaceDistanceFunction<O,D extends Distance<D>>Interface for dimension selecting subspace distance functions. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractDimensionsSelectingDoubleDistanceFunction<V extends FeatureVector<?>>Provides a distance function that computes the distance (which is a double
 distance) between feature vectors only in specified dimensions. | 
| class  | AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?>,P extends PreferenceVectorIndex<V>>Abstract super class for all preference vector based correlation distance
 functions. | 
| class  | DimensionSelectingDistanceFunctionProvides a distance function that computes the distance between feature
 vectors as the absolute difference of their values in a specified dimension. | 
| class  | DiSHDistanceFunctionDistance function used in the DiSH algorithm. | 
| class  | HiSCDistanceFunction<V extends NumberVector<?>>Distance function used in the HiSC algorithm. | 
| class  | LocalSubspaceDistanceFunctionProvides a distance function to determine a kind of correlation distance
 between two points, which is a pair consisting of the distance between the
 two subspaces spanned by the strong eigenvectors of the two points and the
 affine distance between the two subspaces. | 
| class  | SubspaceEuclideanDistanceFunctionProvides a distance function that computes the Euclidean distance between
 feature vectors only in specified dimensions. | 
| class  | SubspaceLPNormDistanceFunctionProvides a distance function that computes the Euclidean distance between
 feature vectors only in specified dimensions. | 
| class  | SubspaceManhattanDistanceFunctionProvides a distance function that computes the Euclidean distance between
 feature vectors only in specified dimensions. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractEditDistanceFunctionProvides the Edit Distance for FeatureVectors. | 
| class  | DTWDistanceFunctionProvides the Dynamic Time Warping distance for FeatureVectors. | 
| class  | EDRDistanceFunctionProvides the Edit Distance on Real Sequence distance for FeatureVectors. | 
| class  | ERPDistanceFunctionProvides the Edit Distance With Real Penalty distance for FeatureVectors. | 
| class  | LCSSDistanceFunctionProvides the Longest Common Subsequence distance for FeatureVectors. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | DBIDSimilarityFunction<D extends Distance<D>>Interface DBIDSimilarityFunction describes the requirements of any similarity
 function defined over object IDs. | 
| interface  | IndexBasedSimilarityFunction<O,D extends Distance<D>>Interface for preprocessor/index based similarity functions. | 
| interface  | NormalizedPrimitiveSimilarityFunction<O,D extends Distance<D>>Marker interface for similarity functions working on primitive objects, and
 limited to the 0-1 value range. | 
| interface  | NormalizedSimilarityFunction<O,D extends Distance<?>>Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. | 
| interface  | PrimitiveSimilarityFunction<O,D extends Distance<D>>Interface SimilarityFunction describes the requirements of any similarity
 function. | 
| interface  | SimilarityFunction<O,D extends Distance<?>>Interface SimilarityFunction describes the requirements of any similarity
 function. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractDBIDSimilarityFunction<D extends Distance<D>>Abstract super class for distance functions needing a preprocessor. | 
| class  | AbstractIndexBasedSimilarityFunction<O,I extends Index,R,D extends Distance<D>>Abstract super class for distance functions needing a preprocessor. | 
| class  | AbstractPrimitiveSimilarityFunction<O,D extends Distance<D>>Base implementation of a similarity function. | 
| class  | FractionalSharedNearestNeighborSimilarityFunction<O>SharedNearestNeighborSimilarityFunction with a pattern defined to accept
 Strings that define a non-negative Integer. | 
| class  | InvertedDistanceSimilarityFunction<O>Adapter to use a primitive number-distance as similarity measure, by computing
 1/distance. | 
| class  | SharedNearestNeighborSimilarityFunction<O>SharedNearestNeighborSimilarityFunction with a pattern defined to accept
 Strings that define a non-negative Integer. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | FooKernelFunctionProvides an experimental KernelDistanceFunction for NumberVectors. | 
| class  | LinearKernelFunction<O extends NumberVector<?>>Provides a linear Kernel function that computes a similarity between the two
 feature vectors V1 and V2 defined by V1^T*V2. | 
| class  | PolynomialKernelFunctionProvides a polynomial Kernel function that computes a similarity between the
 two feature vectors V1 and V2 defined by (V1^T*V2)^degree. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MiniGUIMinimal GUI built around a table-based parameter editor. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | IndexFactory<V,I extends Index>Factory interface for indexes. | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | LocalProjectionIndex.Factory<V extends NumberVector<?>,I extends LocalProjectionIndex<V,?>>Factory | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | AbstractMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>,T extends KNNResult<D>>The parameterizable factory. | 
| static class  | KNNJoinMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>>The parameterizable factory. | 
| static class  | MaterializeKNNAndRKNNPreprocessor.Factory<O,D extends Distance<D>>The parameterizable factory. | 
| static class  | MaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>The parameterizable factory. | 
| static class  | MetricalIndexApproximationMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry<D>>The parameterizable factory. | 
| static class  | PartitionApproximationMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>The parameterizable factory. | 
| static class  | RandomSampleKNNPreprocessor.Factory<O,D extends Distance<D>>The parameterizable factory. | 
| static class  | SpatialApproximationMaterializeKNNPreprocessor.Factory<D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>The actual preprocessor instance. | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | FilteredLocalPCAIndex.Factory<NV extends NumberVector<?>,I extends FilteredLocalPCAIndex<NV>>Factory interface | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | AbstractFilteredPCAIndex.Factory<NV extends NumberVector<?>,I extends AbstractFilteredPCAIndex<NV>>Factory class. | 
| static class  | KNNQueryFilteredPCAIndex.Factory<V extends NumberVector<?>>Factory class. | 
| static class  | RangeQueryFilteredPCAIndex.Factory<V extends NumberVector<?>>Factory class. | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | PreferenceVectorIndex.Factory<V extends NumberVector<?>,I extends PreferenceVectorIndex<V>>Factory interface | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | AbstractPreferenceVectorIndex.Factory<V extends NumberVector<?>,I extends PreferenceVectorIndex<V>>Factory class. | 
| static class  | DiSHPreferenceVectorIndex.Factory<V extends NumberVector<?>>Factory class. | 
| static class  | HiSCPreferenceVectorIndex.Factory<V extends NumberVector<?>>Factory class. | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | SharedNearestNeighborIndex.Factory<O,I extends SharedNearestNeighborIndex<O>>Factory interface | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | SharedNearestNeighborPreprocessor.Factory<O,D extends Distance<D>>Factory class | 
| Modifier and Type | Interface and Description | 
|---|---|
| static interface  | SubspaceProjectionIndex.Factory<NV extends NumberVector<?>,I extends SubspaceProjectionIndex<NV,?>>Factory interface | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | AbstractSubspaceProjectionIndex.Factory<NV extends NumberVector<?>,D extends Distance<D>,I extends AbstractSubspaceProjectionIndex<NV,D,?>>Factory class | 
| static class  | FourCSubspaceIndex.Factory<V extends NumberVector<?>,D extends Distance<D>>Factory class for 4C preprocessors. | 
| static class  | PreDeConSubspaceIndex.Factory<V extends NumberVector<?>,D extends Distance<D>>Factory. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | TreeIndexFactory<O,I extends Index>Abstract base class for tree-based indexes. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractMTreeFactory<O,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>,I extends AbstractMTree<O,D,N,E> & Index>Abstract factory for various MTrees | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractMkTreeUnifiedFactory<O,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>,I extends AbstractMkTree<O,D,N,E> & Index>Abstract factory for various Mk-Trees | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MkAppTreeFactory<O,D extends NumberDistance<D,?>>Factory for a MkApp-Tree | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MkCopTreeFactory<O,D extends NumberDistance<D,?>>Factory for a MkCoPTree-Tree | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MkMaxTreeFactory<O,D extends Distance<D>>Factory for MkMaxTrees | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MkTabTreeFactory<O,D extends Distance<D>>Factory for MkTabTrees | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MTreeFactory<O,D extends Distance<D>>Factory for a M-Tree | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractRStarTreeFactory<O extends NumberVector<?>,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,I extends AbstractRStarTree<N,E> & Index>Abstract factory for R*-Tree based trees. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DeLiCluTreeFactory<O extends NumberVector<?>>Factory for DeLiClu R*-Trees. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | RStarTreeFactory<O extends NumberVector<?>>Factory for regular R*-Trees. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | BulkSplitInterface for a bulk split strategy. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractBulkSplitEncapsulates the required parameters for a bulk split of a spatial index. | 
| class  | FileOrderBulkSplitTrivial bulk loading - assumes that the file has been appropriately sorted
 before. | 
| class  | MaxExtensionBulkSplitSplit strategy for bulk-loading a spatial tree where the split axes are the
 dimensions with maximum extension. | 
| class  | OneDimSortBulkSplitSimple bulk loading strategy by sorting the data along the first dimension. | 
| class  | SortTileRecursiveBulkSplitSort-Tile-Recursive aims at tiling the data space with a grid-like structure
 for partitioning the dataset into the required number of buckets. | 
| class  | SpatialSortBulkSplitBulk loading by spatially sorting the objects, then partitioning the sorted
 list appropriately. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | InsertionStrategyRTree insertion strategy interface. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ApproximativeLeastOverlapInsertionStrategyThe choose subtree method proposed by the R*-Tree with slightly better
 performance for large leaf sizes (linear approximation). | 
| class  | CombinedInsertionStrategyUse two different insertion strategies for directory and leaf nodes. | 
| class  | LeastEnlargementInsertionStrategyThe default R-Tree insertion strategy: find rectangle with least volume
 enlargement. | 
| class  | LeastEnlargementWithAreaInsertionStrategyA slight modification of the default R-Tree insertion strategy: find
 rectangle with least volume enlargement, but choose least area on ties. | 
| class  | LeastOverlapInsertionStrategyThe choose subtree method proposed by the R*-Tree for leaf nodes. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | SplitStrategyGeneric interface for split strategies. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AngTanLinearSplitLine-time complexity split proposed by Ang and Tan. | 
| class  | GreeneSplitQuadratic-time complexity split as used by Diane Greene for the R-Tree. | 
| class  | RTreeLinearSplitLinear-time complexity greedy split as used by the original R-Tree. | 
| class  | RTreeQuadraticSplitQuadratic-time complexity greedy split as used by the original R-Tree. | 
| class  | TopologicalSplitterEncapsulates the required parameters for a topological split of a R*-Tree. | 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | PartialVAFile.Factory<V extends NumberVector<?>>Index factory class. | 
| static class  | VAFile.Factory<V extends NumberVector<?>>Index factory class. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | DimensionSimilarity<V>Interface for computing pairwise dimension similarities, used for arranging
 dimensions in parallel coordinate plots. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CovarianceDimensionSimilarityClass to compute the dimension similarity based on covariances. | 
| class  | HiCSDimensionSimilarityUse the statistical tests as used by HiCS to arrange dimensions. | 
| class  | HSMDimensionSimilarityFIXME: This needs serious TESTING before release. | 
| class  | MCEDimensionSimilarityCompute dimension similarity by using a nested means discretization. | 
| class  | SlopeDimensionSimilarityArrange dimensions based on the entropy of the slope spectrum. | 
| class  | SlopeInversionDimensionSimilarityArrange dimensions based on the entropy of the slope spectrum. | 
| class  | SURFINGDimensionSimilarityCompute the similarity of dimensions using the SURFING score. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | EigenPairFilterThe eigenpair filter is used to filter eigenpairs (i.e. eigenvectors
 and their corresponding eigenvalues) which are a result of a
 Variance Analysis Algorithm, e.g. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractCovarianceMatrixBuilder<V extends NumberVector<?>>Abstract class with the task of computing a Covariance matrix to be used in PCA. | 
| class  | CompositeEigenPairFilterThe  CompositeEigenPairFiltercan be used to build a chain of
 eigenpair filters. | 
| class  | DropEigenPairFilterThe "drop" filter looks for the largest drop in normalized relative
 eigenvalues. | 
| class  | FirstNEigenPairFilterThe FirstNEigenPairFilter marks the n highest eigenpairs as strong
 eigenpairs, where n is a user specified number. | 
| class  | LimitEigenPairFilterThe LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue
 below the specified threshold (relative or absolute) as weak eigenpairs, the
 others are marked as strong eigenpairs. | 
| class  | NormalizingEigenPairFilterThe NormalizingEigenPairFilter normalizes all eigenvectors s.t. | 
| class  | PCAFilteredAutotuningRunner<V extends NumberVector<?>>Performs a self-tuning local PCA based on the covariance matrices of given
 objects. | 
| class  | PCAFilteredRunner<V extends NumberVector<?>>PCA runner that will do dimensionality reduction. | 
| class  | PCARunner<V extends NumberVector<?>>Class to run PCA on given data. | 
| class  | PercentageEigenPairFilterThe PercentageEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. | 
| class  | ProgressiveEigenPairFilterThe ProgressiveEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. | 
| class  | RANSACCovarianceMatrixBuilder<V extends NumberVector<?>>RANSAC based approach to a more robust covariance matrix computation. | 
| class  | RelativeEigenPairFilterThe RelativeEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and marks the first eigenpairs who are a certain factor above the
 average of the remaining eigenvalues. | 
| class  | SignificantEigenPairFilterThe SignificantEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and chooses the contrast of an Eigenvalue to the remaining
 Eigenvalues is maximal. | 
| class  | StandardCovarianceMatrixBuilder<V extends NumberVector<?>>Class for building a "traditional" covariance matrix. | 
| class  | WeakEigenPairFilterThe WeakEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and returns the first eigenpairs who are above the average mark
 as "strong", the others as "weak". | 
| class  | WeightedCovarianceMatrixBuilder<V extends NumberVector<?>>CovarianceMatrixBuilderwith weights. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | GoodnessOfFitTestInterface for the statistical test used by HiCS. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KolmogorovSmirnovTestKolmogorov-Smirnov test. | 
| class  | WelchTTestCalculates a test statistic according to Welch's t test for two samples
 Supplies methods for calculating the degrees of freedom according to the
 Welch-Satterthwaite Equation. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ResultHandlerInterface for any class that can handle results | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DiscardResultHandlerA dummy result handler that discards the actual result, for use in
 benchmarks. | 
| class  | KMLOutputHandlerClass to handle KML output. | 
| class  | LogResultStructureResultHandlerA result handler to help with ELKI development that will just show the
 structure of the result object. | 
| class  | ResultWriterResult handler that feeds the data into a TextWriter | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | EnsembleVotingInterface for ensemble voting rules | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | EnsembleVotingBayesCombination rule based on Bayes theorems. | 
| class  | EnsembleVotingMaxSimple combination rule, by taking the maximum. | 
| class  | EnsembleVotingMeanSimple combination rule, by taking the mean | 
| class  | EnsembleVotingMedianSimple combination rule, by taking the median. | 
| class  | EnsembleVotingMinSimple combination rule, by taking the minimum. | 
| class  | EnsembleVotingRestrictedBayesCombination rule based on Bayes theorems. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ReferencePointsHeuristic<O>Simple Interface for an heuristic to pick reference points. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AxisBasedReferencePoints<V extends NumberVector<?>>Strategy to pick reference points by placing them on the axis ends. | 
| class  | FullDatabaseReferencePoints<O extends NumberVector<?>>Strategy to use the complete database as reference points. | 
| class  | GridBasedReferencePoints<V extends NumberVector<?>>Grid-based strategy to pick reference points. | 
| class  | RandomGeneratedReferencePoints<V extends NumberVector<?>>Reference points generated randomly within the used data space. | 
| class  | RandomSampleReferencePoints<V extends NumberVector<?>>Random-Sampling strategy for picking reference points. | 
| class  | StarBasedReferencePoints<V extends NumberVector<?>>Star-based strategy to pick reference points. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ScalingFunctionInterface for scaling functions used e.g. by outlier evaluation such as
 Histograms and visualization. | 
| interface  | StaticScalingFunctionInterface for Scaling functions that do NOT depend on analyzing the data set. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ClipScalingScale implementing a simple clipping. | 
| class  | GammaScalingNon-linear scaling function using a Gamma curve. | 
| class  | IdentityScalingThe trivial "identity" scaling function. | 
| class  | LinearScalingSimple linear scaling function. | 
| class  | MinusLogScalingScaling function to invert values by computing -1 * Math.log(x) | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | OutlierScalingFunctionInterface for scaling functions used by Outlier evaluation such as Histograms
 and visualization. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HeDESNormalizationOutlierScalingNormalization used by HeDES | 
| class  | MinusLogGammaScalingScaling that can map arbitrary values to a probability in the range of [0:1],
 by assuming a Gamma distribution on the data and evaluating the Gamma CDF. | 
| class  | MinusLogStandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1]. | 
| class  | MixtureModelOutlierScalingFunctionTries to fit a mixture model (exponential for inliers and gaussian for
 outliers) to the outlier score distribution. | 
| class  | MultiplicativeInverseScalingScaling function to invert values basically by computing 1/x, but in a variation
 that maps the values to the [0:1] interval and avoiding division by 0. | 
| class  | OutlierGammaScalingScaling that can map arbitrary values to a probability in the range of [0:1]
 by assuming a Gamma distribution on the values. | 
| class  | OutlierLinearScalingScaling that can map arbitrary values to a value in the range of [0:1]. | 
| class  | OutlierMinusLogScalingScaling function to invert values by computing -1 * Math.log(x)
 
 Useful for example for scaling
  ABOD, but seeMinusLogStandardDeviationScalingandMinusLogGammaScalingfor
 more advanced scalings for this algorithm. | 
| class  | OutlierSqrtScalingScaling that can map arbitrary positive values to a value in the range of
 [0:1]. | 
| class  | RankingPseudoOutlierScalingThis is a pseudo outlier scoring obtained by only considering the ranks of
 the objects. | 
| class  | SigmoidOutlierScalingFunctionTries to fit a sigmoid to the outlier scores and use it to convert the values
 to probability estimates in the range of 0.0 to 1.0 | 
| class  | SqrtStandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1]. | 
| class  | StandardDeviationScalingScaling that can map arbitrary values to a probability in the range of [0:1]. | 
| class  | TopKOutlierScalingOutlier scaling function that only keeps the top k outliers. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ExportVisualizationsClass that automatically generates all visualizations and exports them into
 SVG files. | 
| class  | VisualizerParameterizerUtility class to determine the visualizers for a result class. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ResultVisualizerHandler to process and visualize a Result. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ProjectorFactoryA projector is responsible for adding projections to the visualization by
 detecting appropriate relations in the database. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | HistogramFactoryProduce one-dimensional projections. | 
| class  | OPTICSProjectorFactoryProduce OPTICS plot projections | 
| class  | ParallelPlotFactoryProduce parallel axes projections. | 
| class  | ScatterPlotFactoryProduce scatterplot projections. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | VisFactoryDefines the requirements for a visualizer. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractVisFactoryAbstract superclass for Visualizers (aka: Visualization Factories). | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ColoredHistogramVisualizerGenerates a SVG-Element containing a histogram representing the distribution
 of the database's objects. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | OPTICSClusterVisualizationVisualize the clusters and cluster hierarchy found by OPTICS on the OPTICS
 Plot. | 
| class  | OPTICSPlotCutVisualizationVisualizes a cut in an OPTICS Plot to select an Epsilon value and generate a
 new clustering result. | 
| class  | OPTICSPlotSelectionVisualizationHandle the marker in an OPTICS plot. | 
| class  | OPTICSPlotVisualizerVisualize an OPTICS result by constructing an OPTICS plot for it. | 
| class  | OPTICSSteepAreaVisualizationVisualize the steep areas found in an OPTICS plot | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | CircleSegmentsVisualizerVisualizer to draw circle segments of clusterings and enable interactive
 selection of segments. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AxisReorderVisualizationInteractive SVG-Elements for reordering the axes. | 
| class  | AxisVisibilityVisualizationLayer for controlling axis visbility in parallel coordinates. | 
| class  | LineVisualizationGenerates data lines. | 
| class  | ParallelAxisVisualizationGenerates a SVG-Element containing axes, including labeling. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ClusterOutlineVisualizationGenerates a SVG-Element that visualizes the area covered by a cluster. | 
| class  | ClusterParallelMeanVisualizationGenerates a SVG-Element that visualizes cluster means. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | RTreeParallelVisualizationVisualize the of an R-Tree based index. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | SelectionAxisRangeVisualizationVisualizer for generating an SVG-Element representing the selected range. | 
| class  | SelectionLineVisualizationVisualizer for generating SVG-Elements representing the selected objects | 
| class  | SelectionToolAxisRangeVisualizationTool-Visualization for the tool to select axis ranges | 
| class  | SelectionToolLineVisualizationTool-Visualization for the tool to select objects | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AxisVisualizationGenerates a SVG-Element containing axes, including labeling. | 
| class  | MarkerVisualizationVisualize e.g. a clustering using different markers for different clusters. | 
| class  | PolygonVisualizationRenders PolygonsObject in the data set. | 
| class  | ReferencePointsVisualizationThe actual visualization instance, for a single projection | 
| class  | ToolBox2DVisualizationRenders a tool box on the left of the 2D visualization | 
| class  | TooltipScoreVisualizationGenerates a SVG-Element containing Tooltips. | 
| class  | TooltipStringVisualizationGenerates a SVG-Element containing Tooltips. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ClusterHullVisualizationVisualizer for generating an SVG-Element containing the convex hull / alpha
 shape of each cluster. | 
| class  | ClusterMeanVisualizationVisualize the mean of a KMeans-Clustering | 
| class  | ClusterOrderVisualizationCluster order visualizer: connect objects via the spanning tree the cluster
 order represents. | 
| class  | EMClusterVisualizationVisualizer for generating SVG-Elements containing ellipses for first, second
 and third standard deviation | 
| class  | VoronoiVisualizationVisualizer drawing Voronoi cells for k-means clusterings. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DensityEstimationOverlayA simple density estimation visualization, based on a simple kernel-density
 in the projection, not the actual data! | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | TreeMBRVisualizationVisualize the bounding rectangles of an R-Tree based index. | 
| class  | TreeSphereVisualizationVisualize the bounding sphere of a metric index. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | BubbleVisualizationGenerates a SVG-Element containing bubbles. | 
| class  | COPVectorVisualizationVisualize error vectors as produced by COP. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DistanceFunctionVisualizationFactory for visualizers to generate an SVG-Element containing dots as markers
 representing the kNN of the selected Database objects. | 
| class  | MoveObjectsToolVisualizationTool to move the currently selected objects. | 
| class  | SelectionConvexHullVisualizationVisualizer for generating an SVG-Element containing the convex hull of the
 selected points | 
| class  | SelectionCubeVisualizationVisualizer for generating an SVG-Element containing a cube as marker
 representing the selected range for each dimension | 
| class  | SelectionDotVisualizationVisualizer for generating an SVG-Element containing dots as markers
 representing the selected Database's objects. | 
| class  | SelectionToolCubeVisualizationTool-Visualization for the tool to select ranges. | 
| class  | SelectionToolDotVisualizationTool-Visualization for the tool to select objects | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ClusterEvaluationVisualizationPseudo-Visualizer, that lists the cluster evaluation results found. | 
| class  | HistogramVisualizationVisualizer to draw histograms. | 
| class  | KeyVisualizationVisualizer, displaying the key for a clustering. | 
| class  | LabelVisualizationTrivial "visualizer" that displays a static label. | 
| class  | PixmapVisualizerVisualize an arbitrary pixmap result. | 
| class  | SettingsVisualizationPseudo-Visualizer, that lists the settings of the algorithm- | 
| class  | SimilarityMatrixVisualizerVisualize a similarity matrix with object labels | 
| class  | XYCurveVisualizationVisualizer to render a simple 2D curve such as a ROC curve. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | WorkflowStepTrivial interface for workflow steps. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AlgorithmStepThe "algorithms" step, where data is analyzed. | 
| class  | EvaluationStepThe "evaluation" step, where data is analyzed. | 
| class  | InputStepData input step of the workflow. | 
| class  | LoggingStepPseudo-step to configure logging / verbose mode. | 
| class  | OutputStepThe "output" step, where data is analyzed. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | SameSizeKMeansAlgorithm<V extends NumberVector<?>>K-means variation that produces equally sized clusters. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MultiLPNormTutorial example for ELKI. | 
| class  | TutorialDistanceFunctionTutorial example for ELKI. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DistanceStddevOutlier<O,D extends NumberDistance<D,?>>A simple outlier detection algorithm that computes the standard deviation of
 the kNN distances. |