See: Description

| Interface | Description | 
|---|---|
| OutlierScalingFunction | Interface for scaling functions used by Outlier evaluation such as Histograms
 and visualization. | 
| Class | Description | 
|---|---|
| HeDESNormalizationOutlierScaling | Normalization used by HeDES | 
| MinusLogGammaScaling | Scaling that can map arbitrary values to a probability in the range of [0:1],
 by assuming a Gamma distribution on the data and evaluating the Gamma CDF. | 
| MinusLogGammaScaling.Parameterizer | Parameterization class. | 
| MinusLogStandardDeviationScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]. | 
| MinusLogStandardDeviationScaling.Parameterizer | Parameterization class. | 
| MixtureModelOutlierScalingFunction | Tries to fit a mixture model (exponential for inliers and gaussian for
 outliers) to the outlier score distribution. | 
| MultiplicativeInverseScaling | Scaling function to invert values basically by computing 1/x, but in a variation
 that maps the values to the [0:1] interval and avoiding division by 0. | 
| OutlierGammaScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]
 by assuming a Gamma distribution on the values. | 
| OutlierGammaScaling.Parameterizer | Parameterization class. | 
| OutlierLinearScaling | Scaling that can map arbitrary values to a value in the range of [0:1]. | 
| OutlierLinearScaling.Parameterizer | Parameterization class. | 
| OutlierMinusLogScaling | Scaling function to invert values by computing -1 * Math.log(x)
 
 Useful for example for scaling
  ABOD, but seeMinusLogStandardDeviationScalingandMinusLogGammaScalingfor
 more advanced scalings for this algorithm. | 
| OutlierSqrtScaling | Scaling that can map arbitrary positive values to a value in the range of
 [0:1]. | 
| OutlierSqrtScaling.Parameterizer | Parameterization class. | 
| RankingPseudoOutlierScaling | This is a pseudo outlier scoring obtained by only considering the ranks of
 the objects. | 
| SigmoidOutlierScalingFunction | Tries to fit a sigmoid to the outlier scores and use it to convert the values
 to probability estimates in the range of 0.0 to 1.0 | 
| SqrtStandardDeviationScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]. | 
| SqrtStandardDeviationScaling.Parameterizer | Parameterization class. | 
| StandardDeviationScaling | Scaling that can map arbitrary values to a probability in the range of [0:1]. | 
| StandardDeviationScaling.Parameterizer | Parameterization class. | 
| TopKOutlierScaling | Outlier scaling function that only keeps the top k outliers. | 
| TopKOutlierScaling.Parameterizer | Parameterization class. | 
Scaling of Outlier scores, that require a statistical analysis of the occurring values