See: Description

| Class | Description | 
|---|---|
| AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>> | Abstract base class for distance-based spatial outlier detection methods. | 
| AbstractDistanceBasedSpatialOutlier.Parameterizer<N,O,D extends NumberDistance<D,?>> | Parameterization class. | 
| AbstractNeighborhoodOutlier<O> | Abstract base class for spatial outlier detection methods using a spatial
 neighborhood. | 
| AbstractNeighborhoodOutlier.Parameterizer<O> | Parameterization class. | 
| CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>> | GLS-Backward Search is a statistical approach to detecting spatial outliers. | 
| CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>> | Parameterization class | 
| CTLuMeanMultipleAttributes<N,O extends NumberVector<?>> | Mean Approach is used to discover spatial outliers with multiple attributes. | 
| CTLuMeanMultipleAttributes.Parameterizer<N,O extends NumberVector<?>> | Parameterization class. | 
| CTLuMedianAlgorithm<N> | Median Algorithm of C. | 
| CTLuMedianAlgorithm.Parameterizer<N> | Parameterization class. | 
| CTLuMedianMultipleAttributes<N,O extends NumberVector<?>> | Median Approach is used to discover spatial outliers with multiple
 attributes. | 
| CTLuMedianMultipleAttributes.Parameterizer<N,O extends NumberVector<?>> | Parameterization class. | 
| CTLuMoranScatterplotOutlier<N> | Moran scatterplot outliers, based on the standardized deviation from the
 local and global means. | 
| CTLuMoranScatterplotOutlier.Parameterizer<N> | Parameterization class. | 
| CTLuRandomWalkEC<N,D extends NumberDistance<D,?>> | Spatial outlier detection based on random walks. | 
| CTLuRandomWalkEC.Parameterizer<N,D extends NumberDistance<D,?>> | Parameterization class. | 
| CTLuScatterplotOutlier<N> | Scatterplot-outlier is a spatial outlier detection method that performs a
 linear regression of object attributes and their neighbors average value. | 
| CTLuScatterplotOutlier.Parameterizer<N> | Parameterization class. | 
| CTLuZTestOutlier<N> | Detect outliers by comparing their attribute value to the mean and standard
 deviation of their neighborhood. | 
| CTLuZTestOutlier.Parameterizer<N> | Parameterization class. | 
| SLOM<N,O,D extends NumberDistance<D,?>> | SLOM: a new measure for local spatial outliers
 
 
 Reference: Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. | 
| SLOM.Parameterizer<N,O,D extends NumberDistance<D,?>> | Parameterization class. | 
| SOF<N,O,D extends NumberDistance<D,?>> | The Spatial Outlier Factor (SOF) is a spatial
  LOFvariation. | 
| SOF.Parameterizer<N,O,D extends NumberDistance<D,?>> | Parameterization class | 
| TrimmedMeanApproach<N> | A Trimmed Mean Approach to Finding Spatial Outliers. | 
| TrimmedMeanApproach.Parameterizer<N> | Parameterizer. | 
Spatial outlier detection algorithms