
| Interface | Description | 
|---|---|
| ClusteringAlgorithm<C extends Clustering<? extends Model>> | Interface for Algorithms that are capable to provide a  Clusteringas Result. in general, clustering algorithms are supposed to
 implement theAlgorithm-Interface. | 
| OPTICSTypeAlgorithm<D extends Distance<D>> | Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc. | 
| Class | Description | 
|---|---|
| AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector<?>> | |
| AbstractProjectedClustering.Parameterizer | Parameterization class. | 
| AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<?>> | Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. | 
| AbstractProjectedDBSCAN.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> | Parameterization class. | 
| DBSCAN<O,D extends Distance<D>> | DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
 sets in a database. | 
| DBSCAN.Parameterizer<O,D extends Distance<D>> | Parameterization class. | 
| DeLiClu<NV extends NumberVector<?>,D extends Distance<D>> | DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
 density-connected sets in a database. | 
| DeLiClu.Parameterizer<NV extends NumberVector<?>,D extends Distance<D>> | Parameterization class. | 
| EM<V extends NumberVector<?>> | Provides the EM algorithm (clustering by expectation maximization). | 
| EM.Parameterizer<V extends NumberVector<?>> | Parameterization class. | 
| NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>> | Mean-shift based clustering algorithm. | 
| NaiveMeanShiftClustering.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>> | Parameterizer. | 
| OPTICS<O,D extends Distance<D>> | OPTICS provides the OPTICS algorithm. | 
| OPTICS.Parameterizer<O,D extends Distance<D>> | Parameterization class. | 
| OPTICSXi<N extends NumberDistance<N,?>> | Class to handle OPTICS Xi extraction. | 
| OPTICSXi.Parameterizer<D extends NumberDistance<D,?>> | Parameterization class. | 
| OPTICSXi.SteepArea | Data structure to represent a steep-down-area for the xi method. | 
| OPTICSXi.SteepAreaResult | Result containing the chi-steep areas. | 
| OPTICSXi.SteepDownArea | Data structure to represent a steep-down-area for the xi method. | 
| OPTICSXi.SteepScanPosition<N extends NumberDistance<N,?>> | Position when scanning for steep areas | 
| OPTICSXi.SteepUpArea | Data structure to represent a steep-down-area for the xi method. | 
| SLINK<O,D extends Distance<D>> | Implementation of the efficient Single-Link Algorithm SLINK of R. | 
| SLINK.CompareByDoubleLambda | Order a DBID collection by the lambda value. | 
| SLINK.CompareByLambda<D extends Distance<D>> | Order a DBID collection by the lambda value. | 
| SLINK.Parameterizer<O,D extends Distance<D>> | Parameterization class. | 
| SNNClustering<O> | 
 Shared nearest neighbor clustering. | 
| SNNClustering.Parameterizer<O> | Parameterization class. | 
Clustering algorithms.
Clustering algorithms are supposed to implement theAlgorithm-Interface.
 The more specialized interface ClusteringAlgorithm
 requires an implementing algorithm to provide a special result class suitable as a partitioning of the database.
 More relaxed clustering algorithms are allowed to provide a result that is a fuzzy clustering, does not
 partition the database complete or is in any other sense a relaxed clustering result.de.lmu.ifi.dbs.elki.algorithm