
@Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011", url="http://siam.omnibooksonline.com/2011datamining/data/papers/018.pdf") public class MinusLogGammaScaling extends OutlierGammaScaling
| Modifier and Type | Class and Description | 
|---|---|
| static class  | MinusLogGammaScaling.ParameterizerParameterization class. | 
| Modifier and Type | Field and Description | 
|---|---|
| (package private) double | maxMaximum value seen | 
| (package private) double | mlogmaxMinimum value (after log step, so maximum again) | 
atmean, k, meta, normalize, NORMALIZE_ID, theta| Constructor and Description | 
|---|
| MinusLogGammaScaling()Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | prepare(OutlierResult or)Prepare is called once for each data set, before getScaled() will be
 called. | 
| protected double | preScale(double score)Normalize data if necessary. | 
getMax, getMin, getScaleddouble max
double mlogmax
protected double preScale(double score)
OutlierGammaScalingMinusLogGammaScaling!preScale in class OutlierGammaScalingscore - Original scorepublic void prepare(OutlierResult or)
OutlierScalingFunctionprepare in interface OutlierScalingFunctionprepare in class OutlierGammaScalingor - Outlier result to use