
O - the type of objects handled by this AlgorithmD - Distance type@Reference(authors="L. J. Latecki, A. Lazarevic, D. Pokrajac", title="Outlier Detection with Kernel Density Functions", booktitle="Machine Learning and Data Mining in Pattern Recognition", url="http://dx.doi.org/10.1007/978-3-540-73499-4_6") public class LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>> extends AbstractDistanceBasedAlgorithm<O,D,OutlierResult> implements OutlierAlgorithm
SimpleKernelDensityLOF also uses the reachability concept of LOF.
 
 Reference:
 
 Outlier Detection with Kernel Density Functions.
 L. J. Latecki, A. Lazarevic, D. Pokrajac
 Machine Learning and Data Mining in Pattern Recognition 2007
 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | LDF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>Parameterization class. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected double | cScaling constant, to limit value range to 1/c | 
| protected double | hBandwidth scaling factor. | 
| protected int | kParameter k. | 
| private KernelDensityFunction | kernelKernel density function | 
| private static Logging | LOGThe logger for this class. | 
DISTANCE_FUNCTION_ID| Constructor and Description | 
|---|
| LDF(int k,
   DistanceFunction<? super O,D> distance,
   KernelDensityFunction kernel,
   double h,
   double c)Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| TypeInformation[] | getInputTypeRestriction()Get the input type restriction used for negotiating the data query. | 
| protected Logging | getLogger()Get the (STATIC) logger for this class. | 
| OutlierResult | run(Relation<O> relation)Run the naive kernel density LOF algorithm. | 
getDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
protected int k
protected double h
protected double c
private KernelDensityFunction kernel
public LDF(int k, DistanceFunction<? super O,D> distance, KernelDensityFunction kernel, double h, double c)
k - the value of kkernel - Kernel functionh - Kernel bandwidth scalingc - Score scaling parameterpublic OutlierResult run(Relation<O> relation)
relation - Data to processpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<OutlierResult>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<OutlierResult>