
O - the type of Object the algorithm is applied toD - the type of Distance used@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="M. Ester, H.-P. Kriegel, J. Sander, and X. Xu", title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96), Portland, OR, 1996", url="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1980") public class DBSCAN<O,D extends Distance<D>> extends AbstractDistanceBasedAlgorithm<O,D,Clustering<Model>> implements ClusteringAlgorithm<Clustering<Model>>
 Reference: 
 M. Ester, H.-P. Kriegel, J. Sander, and X. Xu: A Density-Based Algorithm for
 Discovering Clusters in Large Spatial Databases with Noise. 
 In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96),
 Portland, OR, 1996.
 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | DBSCAN.Parameterizer<O,D extends Distance<D>>Parameterization class. | 
| Modifier and Type | Field and Description | 
|---|---|
| private D | epsilonHolds the value of  EPSILON_ID. | 
| static OptionID | EPSILON_IDParameter to specify the maximum radius of the neighborhood to be
 considered, must be suitable to the distance function specified. | 
| private static Logging | LOGThe logger for this class. | 
| protected int | minptsHolds the value of  MINPTS_ID. | 
| static OptionID | MINPTS_IDParameter to specify the threshold for minimum number of points in the
 epsilon-neighborhood of a point, must be an integer greater than 0. | 
| protected ModifiableDBIDs | noiseHolds a set of noise. | 
| protected ModifiableDBIDs | processedIDsHolds a set of processed ids. | 
| protected List<ModifiableDBIDs> | resultListHolds a list of clusters found. | 
DISTANCE_FUNCTION_ID| Constructor and Description | 
|---|
| DBSCAN(DistanceFunction<? super O,D> distanceFunction,
      D epsilon,
      int minpts)Constructor with parameters. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected void | expandCluster(Relation<O> relation,
             RangeQuery<O,D> rangeQuery,
             DBIDRef startObjectID,
             FiniteProgress objprog,
             IndefiniteProgress clusprog)DBSCAN-function expandCluster. | 
| TypeInformation[] | getInputTypeRestriction()Get the input type restriction used for negotiating the data query. | 
| protected Logging | getLogger()Get the (STATIC) logger for this class. | 
| Clustering<Model> | run(Relation<O> relation)Performs the DBSCAN algorithm on the given database. | 
getDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
public static final OptionID EPSILON_ID
private D extends Distance<D> epsilon
EPSILON_ID.public static final OptionID MINPTS_ID
protected int minpts
MINPTS_ID.protected List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
public DBSCAN(DistanceFunction<? super O,D> distanceFunction, D epsilon, int minpts)
distanceFunction - Distance functionepsilon - Epsilon valueminpts - Minpts parameterpublic Clustering<Model> run(Relation<O> relation)
protected void expandCluster(Relation<O> relation, RangeQuery<O,D> rangeQuery, DBIDRef startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
relation - Database relation to run onrangeQuery - Range query to usestartObjectID - potential seed of a new potential clusterobjprog - the progress object for logging the current statuspublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<Model>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<Model>>