Interface | Description |
---|---|
OutlierAlgorithm |
Generic super interface for outlier detection algorithms.
|
Class | Description |
---|---|
ABOD<V extends NumberVector<?>> |
Angle-Based Outlier Detection
Outlier detection using variance analysis on angles, especially for high
dimensional data sets.
|
ABOD.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
AbstractAggarwalYuOutlier<V extends NumberVector<?>> |
Abstract base class for the sparse-grid-cell based outlier detection of
Aggarwal and Yu.
|
AbstractAggarwalYuOutlier.Parameterizer |
Parameterization class.
|
AbstractDBOutlier<O,D extends Distance<D>> |
Simple distance based outlier detection algorithms.
|
AbstractDBOutlier.Parameterizer<O,D extends Distance<D>> |
Parameterization class.
|
AggarwalYuEvolutionary<V extends NumberVector<?>> |
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
detect outliers for high dimensional data.
|
AggarwalYuEvolutionary.Individuum |
Individuum for the evolutionary search.
|
AggarwalYuEvolutionary.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
AggarwalYuNaive<V extends NumberVector<?>> |
BruteForce provides a naive brute force algorithm in which all k-subsets of
dimensions are examined and calculates the sparsity coefficient to find
outliers.
|
AggarwalYuNaive.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>> |
Fast Outlier Detection Using the "approximate Local Correlation Integral".
|
ALOCI.ALOCIQuadTree |
Simple quadtree for ALOCI.
|
ALOCI.Node |
Node of the ALOCI Quadtree
|
ALOCI.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>> |
Parameterization class.
|
COP<V extends NumberVector<?>,D extends NumberDistance<D,?>> |
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
Subspaces
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Arbitrarily Oriented Subspaces in: Proc. |
COP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>> |
Parameterization class.
|
DBOutlierDetection<O,D extends Distance<D>> |
Simple distanced based outlier detection algorithm.
|
DBOutlierDetection.Parameterizer<O,D extends Distance<D>> |
Parameterization class.
|
DBOutlierScore<O,D extends Distance<D>> |
Compute percentage of neighbors in the given neighborhood with size d.
|
DBOutlierScore.Parameterizer<O,D extends Distance<D>> |
Parameterization class.
|
EMOutlier<V extends NumberVector<?>> |
outlier detection algorithm using EM Clustering.
|
EMOutlier.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
GaussianModel<V extends NumberVector<?>> |
Outlier have smallest GMOD_PROB: the outlier scores is the
probability density of the assumed distribution.
|
GaussianModel.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
GaussianUniformMixture<V extends NumberVector<?>> |
Outlier detection algorithm using a mixture model approach.
|
GaussianUniformMixture.Parameterizer<V extends NumberVector<?>> |
Parameterization class.
|
HilOut<O extends NumberVector<?>> |
Fast Outlier Detection in High Dimensional Spaces
Outlier Detection using Hilbert space filling curves
Reference:
F.
|
HilOut.HilFeature |
Hilbert representation of a single object.
|
HilOut.Parameterizer<O extends NumberVector<?>> |
Parameterization class
|
INFLO<O,D extends NumberDistance<D,?>> |
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
Outliers using Symmetric Relationship
Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
INFLO.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
KNNOutlier<O,D extends NumberDistance<D,?>> |
Outlier Detection based on the distance of an object to its k nearest
neighbor.
|
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
KNNWeightOutlier<O,D extends NumberDistance<D,?>> |
Outlier Detection based on the accumulated distances of a point to its k
nearest neighbors.
|
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>> |
Outlier Detection with Kernel Density Functions.
|
LDF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>> |
Parameterization class.
|
LDOF<O,D extends NumberDistance<D,?>> |
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
Database.
|
LDOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LOCI<O,D extends NumberDistance<D,?>> |
Fast Outlier Detection Using the "Local Correlation Integral".
|
LOCI.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LOF<O,D extends NumberDistance<D,?>> |
Algorithm to compute density-based local outlier factors in a database based
on a specified parameter
LOF.K_ID (-lof.k ). |
LOF.LOFResult<O,D extends NumberDistance<D,?>> |
Encapsulates information like the neighborhood, the LRD and LOF values of
the objects during a run of the
LOF algorithm. |
LOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LoOP<O,D extends NumberDistance<D,?>> |
LoOP: Local Outlier Probabilities
Distance/density based algorithm similar to LOF to detect outliers, but with
statistical methods to achieve better result stability.
|
LoOP.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
OnlineLOF<O,D extends NumberDistance<D,?>> |
Incremental version of the
LOF Algorithm, supports insertions and
removals. |
OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
OPTICSOF<O,D extends NumberDistance<D,?>> |
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
Outliers in a database.
|
OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>> |
provides the Reference-Based Outlier Detection algorithm, an algorithm that
computes kNN distances approximately, using reference points.
|
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>> |
Parameterization class.
|
SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>> |
Algorithm to compute local correlation outlier probability.
|
SimpleCOP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>> |
Parameterization class.
|
SimpleKernelDensityLOF<O extends NumberVector<?>,D extends NumberDistance<D,?>> |
A simple variant of the LOF algorithm, which uses a simple kernel density
estimation instead of the local reachability density.
|
SimpleKernelDensityLOF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>> |
Parameterization class.
|
SimpleLOF<O,D extends NumberDistance<D,?>> |
A simplified version of the original LOF algorithm, which does not use the
reachability distance, yielding less stable results on inliers.
|
SimpleLOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
Enum | Description |
---|---|
COP.DistanceDist |
Score type.
|
HilOut.ScoreType |
Type of output: all scores (upper bounds) or top n only
|
Outlier detection algorithms
de.lmu.ifi.dbs.elki.algorithm