
O - the type of Object the algorithm is applied on@Title(value="SNN: Shared Nearest Neighbor Clustering") @Description(value="Algorithm to find shared-nearest-neighbors-density-connected sets in a database based on the parameters \'minPts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="L. Ert\u00f6z, M. Steinbach, V. Kumar", title="Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data", booktitle="Proc. of SIAM Data Mining (SDM), 2003", url="http://www.siam.org/meetings/sdm03/proceedings/sdm03_05.pdf") public class SNNClustering<O> extends AbstractAlgorithm<Clustering<Model>> implements ClusteringAlgorithm<Clustering<Model>>
Shared nearest neighbor clustering.
 Reference: L. Ertöz, M. Steinbach, V. Kumar: Finding Clusters of Different
 Sizes, Shapes, and Densities in Noisy, High Dimensional Data. 
 In: Proc. of SIAM Data Mining (SDM), 2003.
 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | SNNClustering.Parameterizer<O>Parameterization class. | 
| Modifier and Type | Field and Description | 
|---|---|
| private IntegerDistance | epsilonHolds the value of  EPSILON_ID. | 
| static OptionID | EPSILON_IDParameter to specify the minimum SNN density, must be an integer greater
 than 0. | 
| private static Logging | LOGThe logger for this class. | 
| private int | minptsHolds the value of  MINPTS_ID. | 
| static OptionID | MINPTS_IDParameter to specify the threshold for minimum number of points in the
 epsilon-SNN-neighborhood of a point, must be an integer greater than 0. | 
| protected ModifiableDBIDs | noiseHolds a set of noise. | 
| protected ModifiableDBIDs | processedIDsHolds a set of processed ids. | 
| protected List<ModifiableDBIDs> | resultListHolds a list of clusters found. | 
| private SharedNearestNeighborSimilarityFunction<O> | similarityFunctionThe similarity function for the shared nearest neighbor similarity. | 
| Constructor and Description | 
|---|
| SNNClustering(SharedNearestNeighborSimilarityFunction<O> similarityFunction,
             IntegerDistance epsilon,
             int minpts)Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected void | expandCluster(SimilarityQuery<O,IntegerDistance> snnInstance,
             DBID startObjectID,
             FiniteProgress objprog,
             IndefiniteProgress clusprog)DBSCAN-function expandCluster adapted to SNN criterion. | 
| protected ArrayModifiableDBIDs | findSNNNeighbors(SimilarityQuery<O,IntegerDistance> snnInstance,
                DBID queryObject)Returns the shared nearest neighbors of the specified query object in the
 given database. | 
| TypeInformation[] | getInputTypeRestriction()Get the input type restriction used for negotiating the data query. | 
| protected Logging | getLogger()Get the (STATIC) logger for this class. | 
| Clustering<Model> | run(Database database,
   Relation<O> relation)Perform SNN clustering | 
makeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
public static final OptionID EPSILON_ID
private IntegerDistance epsilon
EPSILON_ID.public static final OptionID MINPTS_ID
private int minpts
MINPTS_ID.protected List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
private SharedNearestNeighborSimilarityFunction<O> similarityFunction
public SNNClustering(SharedNearestNeighborSimilarityFunction<O> similarityFunction, IntegerDistance epsilon, int minpts)
similarityFunction - Similarity functionepsilon - Epsilonminpts - Minptspublic Clustering<Model> run(Database database, Relation<O> relation)
database - Databaserelation - Relationprotected ArrayModifiableDBIDs findSNNNeighbors(SimilarityQuery<O,IntegerDistance> snnInstance, DBID queryObject)
snnInstance - shared nearest neighborsqueryObject - the query objectprotected void expandCluster(SimilarityQuery<O,IntegerDistance> snnInstance, DBID startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
snnInstance - shared nearest neighborsstartObjectID - potential seed of a new potential clusterobjprog - the progress object to report about the progress of
        clusteringpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<Model>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<Model>>