
V - the type of NumberVector handled by this AlgorithmD - distance type@Title(value="SOD: Subspace outlier degree") @Description(value="Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data") @Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek", title="Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data", booktitle="Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand, 2009", url="http://dx.doi.org/10.1007/978-3-642-01307-2") public class SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>> extends AbstractAlgorithm<OutlierResult> implements OutlierAlgorithm
 * H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek:
 Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data
 In: Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery
 and Data Mining (PAKDD), Bangkok, Thailand, 2009
 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | SOD.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>Parameterization class. | 
| static class  | SOD.SODModel<V extends NumberVector<?>>SOD Model class | 
| protected static class  | SOD.SODProxyScoreResultProxy class that converts a model result to an actual SOD score result. | 
| Modifier and Type | Field and Description | 
|---|---|
| private double | alphaHolds the value of  ALPHA_ID. | 
| static OptionID | ALPHA_IDParameter to indicate the multiplier for the discriminance value for
 discerning small from large variances. | 
| private int | knnHolds the value of  KNN_ID. | 
| static OptionID | KNN_IDParameter to specify the number of shared nearest neighbors to be
 considered for learning the subspace properties., must be an integer
 greater than 0. | 
| private static Logging | LOGThe logger for this class. | 
| static OptionID | SIM_IDParameter for the similarity function. | 
| private SimilarityFunction<V,D> | similarityFunctionThe similarity function  SIM_ID. | 
| Constructor and Description | 
|---|
| SOD(int knn,
   double alpha,
   SimilarityFunction<V,D> similarityFunction)Constructor with parameters. | 
| Modifier and Type | Method and Description | 
|---|---|
| TypeInformation[] | getInputTypeRestriction()Get the input type restriction used for negotiating the data query. | 
| protected Logging | getLogger()Get the (STATIC) logger for this class. | 
| private DBIDs | getNearestNeighbors(Relation<V> relation,
                   SimilarityQuery<V,D> simQ,
                   DBIDRef queryObject)Provides the k nearest neighbors in terms of the shared nearest neighbor
 distance. | 
| OutlierResult | run(Relation<V> relation)Performs the SOD algorithm on the given database. | 
makeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
public static final OptionID KNN_ID
public static final OptionID ALPHA_ID
public static final OptionID SIM_ID
private int knn
KNN_ID.private double alpha
ALPHA_ID.private SimilarityFunction<V extends NumberVector<?>,D extends NumberDistance<D,?>> similarityFunction
SIM_ID.public SOD(int knn, double alpha, SimilarityFunction<V,D> similarityFunction)
knn - knn valuealpha - Alpha parametersimilarityFunction - Shared nearest neighbor similarity functionpublic OutlierResult run(Relation<V> relation)
relation - Data relation to processprivate DBIDs getNearestNeighbors(Relation<V> relation, SimilarityQuery<V,D> simQ, DBIDRef queryObject)
relation - the database holding the objectssimQ - similarity functionqueryObject - the query object for which the kNNs should be determinedpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<OutlierResult>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<OutlierResult>