
V - Vector typeD - Distance typeM - Cluster model typepublic abstract class AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>> extends AbstractPrimitiveDistanceBasedAlgorithm<NumberVector<?>,D,Clustering<M>> implements KMeans, ClusteringAlgorithm<Clustering<M>>
AbstractPrimitiveDistanceBasedAlgorithm.Parameterizer<O,D extends Distance<D>>| Modifier and Type | Field and Description | 
|---|---|
| protected KMeansInitialization<V> | initializerMethod to choose initial means. | 
| protected int | kHolds the value of  KMeans.K_ID. | 
| protected int | maxiterHolds the value of  KMeans.MAXITER_ID. | 
INIT_ID, K_ID, MAXITER_ID, SEED_ID| Constructor and Description | 
|---|
| AbstractKMeans(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction,
              int k,
              int maxiter,
              KMeansInitialization<V> initializer)Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected boolean | assignToNearestCluster(Relation<V> relation,
                      List<? extends NumberVector<?>> means,
                      List<? extends ModifiableDBIDs> clusters)Returns a list of clusters. | 
| TypeInformation[] | getInputTypeRestriction()Get the input type restriction used for negotiating the data query. | 
| protected void | incrementalUpdateMean(Vector mean,
                     V vec,
                     int newsize,
                     double op)Compute an incremental update for the mean. | 
| protected boolean | macQueenIterate(Relation<V> relation,
               List<Vector> means,
               List<ModifiableDBIDs> clusters)Perform a MacQueen style iteration. | 
| protected List<Vector> | means(List<? extends ModifiableDBIDs> clusters,
     List<? extends NumberVector<?>> means,
     Relation<V> database)Returns the mean vectors of the given clusters in the given database. | 
| protected List<NumberVector<?>> | medians(List<? extends ModifiableDBIDs> clusters,
       List<? extends NumberVector<?>> medians,
       Relation<V> database)Returns the median vectors of the given clusters in the given database. | 
getDistanceFunctiongetLogger, makeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprotected int k
KMeans.K_ID.protected int maxiter
KMeans.MAXITER_ID.protected KMeansInitialization<V extends NumberVector<?>> initializer
public AbstractKMeans(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction, int k, int maxiter, KMeansInitialization<V> initializer)
distanceFunction - distance functionk - k parametermaxiter - Maxiter parameterinitializer - Function to generate the initial meansprotected boolean assignToNearestCluster(Relation<V> relation, List<? extends NumberVector<?>> means, List<? extends ModifiableDBIDs> clusters)
relation - the database to clustermeans - a list of k meansclusters - cluster assignmentpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<M extends MeanModel<V>>>protected List<Vector> means(List<? extends ModifiableDBIDs> clusters, List<? extends NumberVector<?>> means, Relation<V> database)
clusters - the clusters to compute the meansmeans - the recent meansdatabase - the database containing the vectorsprotected List<NumberVector<?>> medians(List<? extends ModifiableDBIDs> clusters, List<? extends NumberVector<?>> medians, Relation<V> database)
clusters - the clusters to compute the meansmedians - the recent mediansdatabase - the database containing the vectorsprotected void incrementalUpdateMean(Vector mean, V vec, int newsize, double op)
mean - Mean to updatevec - Object vectornewsize - (New) size of clusterop - Cluster size change / Weight change