
V - Vector typeD - Distance type@Reference(authors="Y. Cheng", title="Mean shift, mode seeking, and clustering", booktitle="IEEE Transactions on Pattern Analysis and Machine Intelligence 17-8", url="http://dx.doi.org/10.1109/34.400568") public class NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>> extends AbstractDistanceBasedAlgorithm<V,D,Clustering<MeanModel<V>>> implements ClusteringAlgorithm<Clustering<MeanModel<V>>>
 Reference:
 Y. Cheng
 Mean shift, mode seeking, and clustering
 IEEE Transactions on Pattern Analysis and Machine Intelligence 17-8
 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | NaiveMeanShiftClustering.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>Parameterizer. | 
| Modifier and Type | Field and Description | 
|---|---|
| (package private) KernelDensityFunction | kernelDensity estimation kernel. | 
| private static Logging | LOGClass logger. | 
| (package private) static int | MAXITERMaximum number of iterations. | 
| (package private) D | rangeRange of the kernel. | 
DISTANCE_FUNCTION_ID| Constructor and Description | 
|---|
| NaiveMeanShiftClustering(DistanceFunction<? super V,D> distanceFunction,
                        KernelDensityFunction kernel,
                        D range)Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| TypeInformation[] | getInputTypeRestriction()Get the input type restriction used for negotiating the data query. | 
| protected Logging | getLogger()Get the (STATIC) logger for this class. | 
| Clustering<MeanModel<V>> | run(Database database,
   Relation<V> relation)Run the mean-shift clustering algorithm. | 
getDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
KernelDensityFunction kernel
D extends NumberDistance<D,?> range
static final int MAXITER
public NaiveMeanShiftClustering(DistanceFunction<? super V,D> distanceFunction, KernelDensityFunction kernel, D range)
distanceFunction - Distance functionkernel - Kernel functionrange - Kernel radiuspublic Clustering<MeanModel<V>> run(Database database, Relation<V> relation)
database - Databaserelation - Data relationpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<MeanModel<V extends NumberVector<?>>>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<MeanModel<V extends NumberVector<?>>>>