Uses of Class
de.lmu.ifi.dbs.elki.utilities.documentation.Reference

Packages that use Reference
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.outlier.meta Meta outlier detection algorithms: external scores, score rescaling. 
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial Spatial outlier detection algorithms 
de.lmu.ifi.dbs.elki.application.internal Internal utilities for development. 
de.lmu.ifi.dbs.elki.application.visualization Visualization applications in ELKI. 
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries Distance functions designed for time series. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree MTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar RStarTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util Utilities for R*-Tree and variants. 
de.lmu.ifi.dbs.elki.math Mathematical operations and utilities used throughout the framework. 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and Eigenvector processing. 
de.lmu.ifi.dbs.elki.result Result types, representation and handling 
de.lmu.ifi.dbs.elki.utilities.documentation Documentation utilities: Annotations for Title, Description, Reference 
de.lmu.ifi.dbs.elki.utilities.scaling.outlier Scaling of Outlier scores, that require a statistical analysis of the occurring values 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d Visualizers based on 2D projections. 
 

Uses of Reference in de.lmu.ifi.dbs.elki.algorithm
 

Classes in de.lmu.ifi.dbs.elki.algorithm with annotations of type Reference
 class APRIORI
          Provides the APRIORI algorithm for Mining Association Rules.
 class DependencyDerivator<V extends NumberVector<V,?>,D extends Distance<D>>
           Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA.
 

Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with annotations of type Reference
 class DBSCAN<O,D extends Distance<D>>
          DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
 class DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>>
          DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database.
 class EM<V extends NumberVector<V,?>>
          Provides the EM algorithm (clustering by expectation maximization).
 class KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the k-means algorithm.
 class OPTICS<O,D extends Distance<D>>
          OPTICS provides the OPTICS algorithm.
 class SLINK<O,D extends Distance<D>>
          Efficient implementation of the Single-Link Algorithm SLINK of R.
 class SNNClustering<O>
           Shared nearest neighbor clustering.
 

Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with annotations of type Reference
 class CASH
          Provides the CASH algorithm, an subspace clustering algorithm based on the hough transform.
 class COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
          Provides the COPAC algorithm, an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions.
 class ERiC<V extends NumberVector<V,?>>
          Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.
 class FourC<V extends NumberVector<V,?>>
          4C identifies local subgroups of data objects sharing a uniform correlation.
 class HiCO<V extends NumberVector<V,?>>
          Implementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters.
 class ORCLUS<V extends NumberVector<V,?>>
          ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high dimensional spaces.
 

Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with annotations of type Reference
 class CLIQUE<V extends NumberVector<V,?>>
          

Implementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality.

 class DiSH<V extends NumberVector<V,?>>
           Algorithm for detecting subspace hierarchies.
 class HiSC<V extends NumberVector<V,?>>
          Implementation of the HiSC algorithm, an algorithm for detecting hierarchies of subspace clusters.
 class PreDeCon<V extends NumberVector<V,?>>
          

PreDeCon computes clusters of subspace preference weighted connected points.

 class PROCLUS<V extends NumberVector<V,?>>
          

Provides the PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces.

 class SUBCLU<V extends NumberVector<V,?>>
           Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces.
 

Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier with annotations of type Reference
 class ABOD<V extends NumberVector<V,?>>
          Angle-Based Outlier Detection Outlier detection using variance analysis on angles, especially for high dimensional data sets.
 class AbstractAggarwalYuOutlier<V extends NumberVector<?,?>>
          Abstract base class for the sparse-grid-cell based outlier detection of Aggarwal and Yu.
 class AggarwalYuEvolutionary<V extends NumberVector<?,?>>
          EAFOD provides the evolutionary outlier detection algorithm, an algorithm to detect outliers for high dimensional data.
 class AggarwalYuNaive<V extends NumberVector<?,?>>
          BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers.
 class DBOutlierDetection<O,D extends Distance<D>>
          Simple distanced based outlier detection algorithm.
 class DBOutlierScore<O,D extends Distance<D>>
          Compute percentage of neighbors in the given neighborhood with size d.
 class GaussianUniformMixture<V extends NumberVector<V,?>>
          Outlier detection algorithm using a mixture model approach.
 class INFLO<O,D extends NumberDistance<D,?>>
          INFLO provides the Mining Algorithms (Two-way Search Method) for Influence Outliers using Symmetric Relationship Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006
Ranking outliers using symmetric neighborhood relationship
In Proc.
 class KNNOutlier<O,D extends NumberDistance<D,?>>
           Outlier Detection based on the distance of an object to its k nearest neighbor.
 class KNNWeightOutlier<O,D extends NumberDistance<D,?>>
          Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.
 class LDOF<O,D extends NumberDistance<D,?>>
           Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database.
 class LOCI<O,D extends NumberDistance<D,?>>
          Fast Outlier Detection Using the "Local Correlation Integral".
 class LOF<O,D extends NumberDistance<D,?>>
           Algorithm to compute density-based local outlier factors in a database based on a specified parameter LOF.K_ID (-lof.k).
 class LoOP<O,D extends NumberDistance<D,?>>
          LoOP: Local Outlier Probabilities Distance/density based algorithm similar to LOF to detect outliers, but with statistical methods to achieve better result stability.
 class OPTICSOF<O,D extends NumberDistance<D,?>>
          OPTICSOF provides the Optics-of algorithm, an algorithm to find Local Outliers in a database.
 class ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
           provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points.
 class SOD<V extends NumberVector<V,?>>
           
 

Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.meta with annotations of type Reference
 class FeatureBagging
          A simple ensemble method called "Feature bagging" for outlier detection.
 

Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial
 

Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with annotations of type Reference
 class CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          GLS-Backward Search is a statistical approach to detecting spatial outliers.
 class CTLuMeanMultipleAttributes<N,O extends NumberVector<?,?>>
          Mean Approach is used to discover spatial outliers with multiple attributes.
 class CTLuMedianAlgorithm<N>
          Median Algorithm of C.
 class CTLuMedianMultipleAttributes<N,O extends NumberVector<?,?>>
          Median Approach is used to discover spatial outliers with multiple attributes.
 class CTLuMoranScatterplotOutlier<N>
          Moran scatterplot outliers, based on the standardized deviation from the local and global means.
 class CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
          Spatial outlier detection based on random walks.
 class CTLuScatterplotOutlier<N>
          Scatterplot-outlier is a spatial outlier detection method that performs a linear regression of object attributes and their neighbors average value.
 class CTLuZTestOutlier<N>
          Detect outliers by comparing their attribute value to the mean and standard deviation of their neighborhood.
 class SLOM<N,O,D extends NumberDistance<D,?>>
          SLOM: a new measure for local spatial outliers Reference:
Sanjay Chawla and Pei Sun
SLOM: a new measure for local spatial outliers
in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero.
 class SOF<N,O,D extends NumberDistance<D,?>>
          The Spatial Outlier Factor (SOF) is a spatial LOF variation.
 class TrimmedMeanApproach<N>
          A Trimmed Mean Approach to Finding Spatial Outliers.
 

Uses of Reference in de.lmu.ifi.dbs.elki.application.internal
 

Methods in de.lmu.ifi.dbs.elki.application.internal that return types with arguments of type Reference
private static List<Pair<Reference,List<Class<?>>>> DocumentReferences.sortedReferences()
           
 

Uses of Reference in de.lmu.ifi.dbs.elki.application.visualization
 

Classes in de.lmu.ifi.dbs.elki.application.visualization with annotations of type Reference
 class KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
          User application to explore the k Nearest Neighbors for a given data set and distance function.
 

Uses of Reference in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram with annotations of type Reference
 class HistogramIntersectionDistanceFunction
          Intersection distance for color histograms.
 class HSBHistogramQuadraticDistanceFunction
          Distance function for HSB color histograms based on a quadratic form and color similarity.
 class RGBHistogramQuadraticDistanceFunction
          Distance function for RGB color histograms based on a quadratic form and color similarity.
 

Uses of Reference in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries with annotations of type Reference
 class DTWDistanceFunction
          Provides the Dynamic Time Warping distance for FeatureVectors.
 class EDRDistanceFunction
          Provides the Edit Distance on Real Sequence distance for FeatureVectors.
 class ERPDistanceFunction
          Provides the Edit Distance With Real Penalty distance for FeatureVectors.
 class LCSSDistanceFunction
          Provides the Longest Common Subsequence distance for FeatureVectors.
 

Uses of Reference in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree
 

Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with annotations of type Reference
 class MTree<O,D extends Distance<D>>
          MTree is a metrical index structure based on the concepts of the M-Tree.
 

Uses of Reference in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with annotations of type Reference
 class RStarTree
          RStarTree is a spatial index structure based on the concepts of the R*-Tree.
 

Uses of Reference in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util
 

Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util with annotations of type Reference
 class TopologicalSplitter
          Encapsulates the required parameters for a topological split of a R*-Tree.
 

Uses of Reference in de.lmu.ifi.dbs.elki.math
 

Classes in de.lmu.ifi.dbs.elki.math with annotations of type Reference
 class ConvexHull2D
          Classes to compute the convex hull of a set of points in 2D, using the classic Grahams scan.
 class Mean
          Compute the mean using a numerically stable online algorithm.
 class MeanVariance
          Do some simple statistics (mean, variance) using a numerically stable online algorithm.
 

Uses of Reference in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 

Classes in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with annotations of type Reference
 class WeightedCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
          CovarianceMatrixBuilder with weights.
 

Uses of Reference in de.lmu.ifi.dbs.elki.result
 

Classes in de.lmu.ifi.dbs.elki.result with annotations of type Reference
 class KMLOutputHandler
          Class to handle KML output.
 

Uses of Reference in de.lmu.ifi.dbs.elki.utilities.documentation
 

Methods in de.lmu.ifi.dbs.elki.utilities.documentation that return Reference
static Reference DocumentationUtil.getReference(Class<?> c)
          Get the reference annotation of a class, or null.
 

Uses of Reference in de.lmu.ifi.dbs.elki.utilities.scaling.outlier
 

Classes in de.lmu.ifi.dbs.elki.utilities.scaling.outlier with annotations of type Reference
 class HeDESNormalizationOutlierScaling
          Normalization used by HeDES
 class MinusLogGammaScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF.
 class MinusLogStandardDeviationScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1].
 class MixtureModelOutlierScalingFunction
          Tries to fit a mixture model (exponential for inliers and gaussian for outliers) to the outlier score distribution.
 class MultiplicativeInverseScaling
          Scaling function to invert values basically by computing 1/x, but in a variation that maps the values to the [0:1] interval and avoiding division by 0.
 class OutlierGammaScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1] by assuming a Gamma distribution on the values.
 class OutlierMinusLogScaling
          Scaling function to invert values by computing -1 * Math.log(x) Useful for example for scaling ABOD, but see MinusLogStandardDeviationScaling and MinusLogGammaScaling for more advanced scalings for this algorithm.
 class SigmoidOutlierScalingFunction
          Tries to fit a sigmoid to the outlier scores and use it to convert the values to probability estimates in the range of 0.0 to 1.0
 class SqrtStandardDeviationScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1].
 class StandardDeviationScaling
          Scaling that can map arbitrary values to a probability in the range of [0:1].
 

Uses of Reference in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d
 

Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with annotations of type Reference
 class BubbleVisualization<NV extends NumberVector<NV,?>>
          Generates a SVG-Element containing bubbles.
 


Release 0.4.0 (2011-09-20_1324)