|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Reference | |
---|---|
de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.outlier.meta | Meta outlier detection algorithms: external scores, score rescaling. |
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | Spatial outlier detection algorithms |
de.lmu.ifi.dbs.elki.application.internal | Internal utilities for development. |
de.lmu.ifi.dbs.elki.application.visualization | Visualization applications in ELKI. |
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries | Distance functions designed for time series. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | MTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | RStarTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util | Utilities for R*-Tree and variants. |
de.lmu.ifi.dbs.elki.math | Mathematical operations and utilities used throughout the framework. |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. |
de.lmu.ifi.dbs.elki.result | Result types, representation and handling |
de.lmu.ifi.dbs.elki.utilities.documentation | Documentation utilities: Annotations for Title, Description, Reference |
de.lmu.ifi.dbs.elki.utilities.scaling.outlier | Scaling of Outlier scores, that require a statistical analysis of the occurring values |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
Uses of Reference in de.lmu.ifi.dbs.elki.algorithm |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm with annotations of type Reference | |
---|---|
class |
APRIORI
Provides the APRIORI algorithm for Mining Association Rules. |
class |
DependencyDerivator<V extends NumberVector<V,?>,D extends Distance<D>>
Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA. |
Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with annotations of type Reference | |
---|---|
class |
DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database. |
class |
DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database. |
class |
EM<V extends NumberVector<V,?>>
Provides the EM algorithm (clustering by expectation maximization). |
class |
KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the k-means algorithm. |
class |
OPTICS<O,D extends Distance<D>>
OPTICS provides the OPTICS algorithm. |
class |
SLINK<O,D extends Distance<D>>
Efficient implementation of the Single-Link Algorithm SLINK of R. |
class |
SNNClustering<O>
Shared nearest neighbor clustering. |
Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with annotations of type Reference | |
---|---|
class |
CASH
Provides the CASH algorithm, an subspace clustering algorithm based on the hough transform. |
class |
COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions. |
class |
ERiC<V extends NumberVector<V,?>>
Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result. |
class |
FourC<V extends NumberVector<V,?>>
4C identifies local subgroups of data objects sharing a uniform correlation. |
class |
HiCO<V extends NumberVector<V,?>>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters. |
class |
ORCLUS<V extends NumberVector<V,?>>
ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high dimensional spaces. |
Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with annotations of type Reference | |
---|---|
class |
CLIQUE<V extends NumberVector<V,?>>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify dense clusters in subspaces of maximum dimensionality. |
class |
DiSH<V extends NumberVector<V,?>>
Algorithm for detecting subspace hierarchies. |
class |
HiSC<V extends NumberVector<V,?>>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies of subspace clusters. |
class |
PreDeCon<V extends NumberVector<V,?>>
PreDeCon computes clusters of subspace preference weighted connected points. |
class |
PROCLUS<V extends NumberVector<V,?>>
Provides the PROCLUS algorithm, an algorithm to find subspace clusters in high dimensional spaces. |
class |
SUBCLU<V extends NumberVector<V,?>>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily shaped and positioned clusters in subspaces. |
Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier with annotations of type Reference | |
---|---|
class |
ABOD<V extends NumberVector<V,?>>
Angle-Based Outlier Detection Outlier detection using variance analysis on angles, especially for high dimensional data sets. |
class |
AbstractAggarwalYuOutlier<V extends NumberVector<?,?>>
Abstract base class for the sparse-grid-cell based outlier detection of Aggarwal and Yu. |
class |
AggarwalYuEvolutionary<V extends NumberVector<?,?>>
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to detect outliers for high dimensional data. |
class |
AggarwalYuNaive<V extends NumberVector<?,?>>
BruteForce provides a naive brute force algorithm in which all k-subsets of dimensions are examined and calculates the sparsity coefficient to find outliers. |
class |
DBOutlierDetection<O,D extends Distance<D>>
Simple distanced based outlier detection algorithm. |
class |
DBOutlierScore<O,D extends Distance<D>>
Compute percentage of neighbors in the given neighborhood with size d. |
class |
GaussianUniformMixture<V extends NumberVector<V,?>>
Outlier detection algorithm using a mixture model approach. |
class |
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence Outliers using Symmetric Relationship Reference: Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
class |
KNNOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the distance of an object to its k nearest neighbor. |
class |
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k nearest neighbors. |
class |
LDOF<O,D extends NumberDistance<D,?>>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a Database. |
class |
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral". |
class |
LOF<O,D extends NumberDistance<D,?>>
Algorithm to compute density-based local outlier factors in a database based on a specified parameter LOF.K_ID (-lof.k ). |
class |
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities Distance/density based algorithm similar to LOF to detect outliers, but with statistical methods to achieve better result stability. |
class |
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local Outliers in a database. |
class |
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points. |
class |
SOD<V extends NumberVector<V,?>>
|
Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.meta with annotations of type Reference | |
---|---|
class |
FeatureBagging
A simple ensemble method called "Feature bagging" for outlier detection. |
Uses of Reference in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial with annotations of type Reference | |
---|---|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers. |
class |
CTLuMeanMultipleAttributes<N,O extends NumberVector<?,?>>
Mean Approach is used to discover spatial outliers with multiple attributes. |
class |
CTLuMedianAlgorithm<N>
Median Algorithm of C. |
class |
CTLuMedianMultipleAttributes<N,O extends NumberVector<?,?>>
Median Approach is used to discover spatial outliers with multiple attributes. |
class |
CTLuMoranScatterplotOutlier<N>
Moran scatterplot outliers, based on the standardized deviation from the local and global means. |
class |
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks. |
class |
CTLuScatterplotOutlier<N>
Scatterplot-outlier is a spatial outlier detection method that performs a linear regression of object attributes and their neighbors average value. |
class |
CTLuZTestOutlier<N>
Detect outliers by comparing their attribute value to the mean and standard deviation of their neighborhood. |
class |
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers Reference: Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. |
class |
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial LOF variation. |
class |
TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers. |
Uses of Reference in de.lmu.ifi.dbs.elki.application.internal |
---|
Methods in de.lmu.ifi.dbs.elki.application.internal that return types with arguments of type Reference | |
---|---|
private static List<Pair<Reference,List<Class<?>>>> |
DocumentReferences.sortedReferences()
|
Uses of Reference in de.lmu.ifi.dbs.elki.application.visualization |
---|
Classes in de.lmu.ifi.dbs.elki.application.visualization with annotations of type Reference | |
---|---|
class |
KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
User application to explore the k Nearest Neighbors for a given data set and distance function. |
Uses of Reference in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram with annotations of type Reference | |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms. |
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and color similarity. |
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and color similarity. |
Uses of Reference in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries with annotations of type Reference | |
---|---|
class |
DTWDistanceFunction
Provides the Dynamic Time Warping distance for FeatureVectors. |
class |
EDRDistanceFunction
Provides the Edit Distance on Real Sequence distance for FeatureVectors. |
class |
ERPDistanceFunction
Provides the Edit Distance With Real Penalty distance for FeatureVectors. |
class |
LCSSDistanceFunction
Provides the Longest Common Subsequence distance for FeatureVectors. |
Uses of Reference in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with annotations of type Reference | |
---|---|
class |
MTree<O,D extends Distance<D>>
MTree is a metrical index structure based on the concepts of the M-Tree. |
Uses of Reference in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with annotations of type Reference | |
---|---|
class |
RStarTree
RStarTree is a spatial index structure based on the concepts of the R*-Tree. |
Uses of Reference in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.util with annotations of type Reference | |
---|---|
class |
TopologicalSplitter
Encapsulates the required parameters for a topological split of a R*-Tree. |
Uses of Reference in de.lmu.ifi.dbs.elki.math |
---|
Classes in de.lmu.ifi.dbs.elki.math with annotations of type Reference | |
---|---|
class |
ConvexHull2D
Classes to compute the convex hull of a set of points in 2D, using the classic Grahams scan. |
class |
Mean
Compute the mean using a numerically stable online algorithm. |
class |
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online algorithm. |
Uses of Reference in de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
---|
Classes in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with annotations of type Reference | |
---|---|
class |
WeightedCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
CovarianceMatrixBuilder with weights. |
Uses of Reference in de.lmu.ifi.dbs.elki.result |
---|
Classes in de.lmu.ifi.dbs.elki.result with annotations of type Reference | |
---|---|
class |
KMLOutputHandler
Class to handle KML output. |
Uses of Reference in de.lmu.ifi.dbs.elki.utilities.documentation |
---|
Methods in de.lmu.ifi.dbs.elki.utilities.documentation that return Reference | |
---|---|
static Reference |
DocumentationUtil.getReference(Class<?> c)
Get the reference annotation of a class, or null . |
Uses of Reference in de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
---|
Classes in de.lmu.ifi.dbs.elki.utilities.scaling.outlier with annotations of type Reference | |
---|---|
class |
HeDESNormalizationOutlierScaling
Normalization used by HeDES |
class |
MinusLogGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1], by assuming a Gamma distribution on the data and evaluating the Gamma CDF. |
class |
MinusLogStandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]. |
class |
MixtureModelOutlierScalingFunction
Tries to fit a mixture model (exponential for inliers and gaussian for outliers) to the outlier score distribution. |
class |
MultiplicativeInverseScaling
Scaling function to invert values basically by computing 1/x, but in a variation that maps the values to the [0:1] interval and avoiding division by 0. |
class |
OutlierGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1] by assuming a Gamma distribution on the values. |
class |
OutlierMinusLogScaling
Scaling function to invert values by computing -1 * Math.log(x) Useful for example for scaling ABOD , but see
MinusLogStandardDeviationScaling and MinusLogGammaScaling for
more advanced scalings for this algorithm. |
class |
SigmoidOutlierScalingFunction
Tries to fit a sigmoid to the outlier scores and use it to convert the values to probability estimates in the range of 0.0 to 1.0 |
class |
SqrtStandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]. |
class |
StandardDeviationScaling
Scaling that can map arbitrary values to a probability in the range of [0:1]. |
Uses of Reference in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
---|
Classes in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with annotations of type Reference | |
---|---|
class |
BubbleVisualization<NV extends NumberVector<NV,?>>
Generates a SVG-Element containing bubbles. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |