Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask
main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH
algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN
Generalized DBSCAN is an abstraction of the original DBSCAN idea,
that allows the use of arbitrary "neighborhood" and "core point" predicates.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch |
BIRCH clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional |
Clustering algorithms for one-dimensional data.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected
clustering algorithms or subspace clustering algorithms according to the
classical but somewhat obsolete classification schema of clustering
algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique |
Helper classes for the
CLIQUE
algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased |
Angle-based outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods
Methods that detect outliers in subspaces (projections) of the data set.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.svm |
Support-Vector-Machines for outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label
outliers.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.timeseries |
Algorithms for change point detection in time series.
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms
|
de.lmu.ifi.dbs.elki.data.projection |
Data projections
|
de.lmu.ifi.dbs.elki.data.projection.random |
Random projection families
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions
|
de.lmu.ifi.dbs.elki.data.uncertain |
Uncertain data objects.
|
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries
|
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries, that return all objects within
the radius ε
|
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views)
|
de.lmu.ifi.dbs.elki.datasource.filter |
Data filtering, in particular for normalization and projection
|
de.lmu.ifi.dbs.elki.datasource.filter.cleaning |
Filters for data cleaning.
|
de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise |
Normalizations operating on columns / variates; where each column is treated independently.
|
de.lmu.ifi.dbs.elki.datasource.filter.normalization.instancewise |
Instancewise normalization, where each instance is normalized independently.
|
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations
|
de.lmu.ifi.dbs.elki.datasource.filter.typeconversions |
Filters to perform data type conversions.
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types
The general use-case for any parser is to create objects out of an
InputStream (e.g. by reading a data file). |
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations
|
de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
Geographic (earth) distance functions
|
de.lmu.ifi.dbs.elki.distance.distancefunction.histogram |
Distance functions for one-dimensional histograms.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski |
Minkowski space Lp norms such as the popular Euclidean and
Manhattan distances.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic |
Distance from probability theory, mostly divergences such as K-L-divergence,
J-divergence, F-divergence, χ²-divergence, etc.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.set |
Distance functions for binary and set type data.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces
|
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
Distance functions designed for time series
Note that some regular distance functions (e.g., Euclidean) are also used on
time series.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.scores.adapter |
Adapter classes for ranking and scoring measures.
|
de.lmu.ifi.dbs.elki.index.invertedlist |
Indexes using inverted lists.
|
de.lmu.ifi.dbs.elki.index.lsh.hashfamilies |
Hash function families for LSH
|
de.lmu.ifi.dbs.elki.index.lsh.hashfunctions |
Hash functions for LSH
|
de.lmu.ifi.dbs.elki.index.preprocessed.fastoptics |
Preprocessed index used by the FastOPTICS algorithm.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA
|
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors
|
de.lmu.ifi.dbs.elki.index.projected |
Projected indexes for data
|
de.lmu.ifi.dbs.elki.index.tree.spatial |
Tree-based index structures for spatial indexing
|
de.lmu.ifi.dbs.elki.index.tree.spatial.kd |
K-d-tree and variants
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants |
R*-Tree and variants
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.flat | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
de.lmu.ifi.dbs.elki.index.vafile |
Vector Approximation File
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
The linear algebra package provides classes and computational methods for
operations on matrices and vectors.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing
|
de.lmu.ifi.dbs.elki.math.spacefillingcurves |
Space filling curves
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists,
numerical vectors, database vectors and arrays.
|
de.lmu.ifi.dbs.elki.utilities.referencepoints |
Package containing strategies to obtain reference points
Shared code for various algorithms that use reference points
|
de.lmu.ifi.dbs.elki.visualization.parallel3d |
3DPC: 3D parallel coordinate plot visualization for ELKI.
|
de.lmu.ifi.dbs.elki.visualization.parallel3d.layout |
Layouting algorithms for 3D parallel coordinate plots.
|
de.lmu.ifi.dbs.elki.visualization.projections |
Visualization projections
|
de.lmu.ifi.dbs.elki.visualization.projector |
Projectors are responsible for finding appropriate projections for data
relations
|
de.lmu.ifi.dbs.elki.visualization.svg |
Base SVG functionality (generation, markers, thumbnails, export, ...)
|
de.lmu.ifi.dbs.elki.visualization.visualizers.histogram |
Visualizers based on 1D projected histograms
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot |
Visualizers based on scatterplots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection |
Visualizers for object selection based on 2D projections
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation
|
tutorial.distancefunction |
Classes from the tutorial on implementing distance functions
|
Modifier and Type | Class and Description |
---|---|
class |
DependencyDerivator<V extends NumberVector>
Dependency derivator computes quantitatively linear dependencies among
attributes of a given dataset based on a linear correlation PCA.
|
static class |
DependencyDerivator.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
DummyAlgorithm<O extends NumberVector>
Dummy algorithm, which just iterates over all points once, doing a 10NN query
each.
|
class |
KNNJoin<V extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors.
|
static class |
KNNJoin.Parameterizer<V extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
RangeQueryBenchmarkAlgorithm<O extends NumberVector>
Benchmarking algorithm that computes a range query for each point.
|
static class |
RangeQueryBenchmarkAlgorithm.Parameterizer<O extends NumberVector>
Parameterization class
|
Modifier and Type | Method and Description |
---|---|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation,
Relation<NumberVector> radrel)
Run the algorithm, with separate radius relation
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector>
|
class |
GriDBSCAN<V extends NumberVector>
Using Grid for Accelerating Density-Based Clustering.
|
protected static class |
GriDBSCAN.Instance<V extends NumberVector>
Instance, for a single run.
|
static class |
GriDBSCAN.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
NaiveMeanShiftClustering<V extends NumberVector>
Mean-shift based clustering algorithm.
|
static class |
NaiveMeanShiftClustering.Parameterizer<V extends NumberVector>
Parameterizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBiclustering<V extends NumberVector,M extends BiclusterModel>
Abstract class as a convenience for different biclustering approaches.
|
class |
ChengAndChurch<V extends NumberVector>
Cheng and Church biclustering.
|
static class |
ChengAndChurch.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
CASH<V extends NumberVector>
The CASH algorithm is a subspace clustering algorithm based on the Hough
transform.
|
class |
COPAC<V extends NumberVector>
COPAC is an algorithm to partition a database according to the correlation
dimension of its objects and to then perform an arbitrary clustering
algorithm over the partitions.
|
static class |
COPAC.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
ERiC<V extends NumberVector>
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
|
static class |
ERiC.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
FourC<V extends NumberVector>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
static class |
FourC.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
HiCO<V extends NumberVector>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
of correlation clusters.
|
static class |
HiCO.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
ORCLUS<V extends NumberVector>
ORCLUS: Arbitrarily ORiented projected CLUSter generation.
|
static class |
ORCLUS.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
protected CASH<NumberVector> |
CASH.Parameterizer.makeInstance() |
Modifier and Type | Method and Description |
---|---|
private LMCLUS.Separation |
LMCLUS.findSeparation(Relation<NumberVector> relation,
DBIDs currentids,
int dimension,
java.util.Random r)
This method samples a number of linear manifolds an tries to determine
which the one with the best cluster is.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Modifier and Type | Field and Description |
---|---|
private NumberVector |
ParameterizationFunction.vec
The actual vector.
|
Constructor and Description |
---|
ParameterizationFunction(NumberVector vec)
Provides a new parameterization function describing all lines in a
d-dimensional feature space intersecting in one point p.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractEMModelFactory<V extends NumberVector,M extends MeanModel>
Abstract base class for initializing EM.
|
static class |
AbstractEMModelFactory.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
DiagonalGaussianModelFactory<V extends NumberVector>
Factory for EM with multivariate gaussian models using diagonal matrixes.
|
static class |
DiagonalGaussianModelFactory.Parameterizer<V extends NumberVector>
Parameterization class
|
class |
EM<V extends NumberVector,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
Mixture Modeling (GMM), with optional MAP regularization.
|
static class |
EM.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
interface |
EMClusterModelFactory<V extends NumberVector,M extends MeanModel>
Factory for initializing the EM models.
|
class |
MultivariateGaussianModelFactory<V extends NumberVector>
Factory for EM with multivariate Gaussian models (with covariance; also known
as Gaussian Mixture Modeling, GMM).
|
static class |
MultivariateGaussianModelFactory.Parameterizer<V extends NumberVector>
Parameterization class
|
class |
SphericalGaussianModelFactory<V extends NumberVector>
Factory for EM with multivariate gaussian models using a single variance.
|
static class |
SphericalGaussianModelFactory.Parameterizer<V extends NumberVector>
Parameterization class
|
class |
TextbookMultivariateGaussianModelFactory<V extends NumberVector>
Factory for EM with multivariate Gaussian model, using the textbook
algorithm.
|
static class |
TextbookMultivariateGaussianModelFactory.Parameterizer<V extends NumberVector>
Parameterization class
|
class |
TwoPassMultivariateGaussianModelFactory<V extends NumberVector>
Factory for EM with multivariate Gaussian models (with covariance; also known
as Gaussian Mixture Modeling, GMM).
|
static class |
TwoPassMultivariateGaussianModelFactory.Parameterizer<V extends NumberVector>
Parameterization class
|
Modifier and Type | Method and Description |
---|---|
double |
MultivariateGaussianModel.estimateLogDensity(NumberVector vec) |
double |
EMClusterModel.estimateLogDensity(NumberVector vec)
Estimate the log likelihood of a vector.
|
double |
DiagonalGaussianModel.estimateLogDensity(NumberVector vec) |
double |
SphericalGaussianModel.estimateLogDensity(NumberVector vec) |
double |
TextbookMultivariateGaussianModel.estimateLogDensity(NumberVector vec) |
double |
TwoPassMultivariateGaussianModel.estimateLogDensity(NumberVector vec) |
default void |
EMClusterModel.firstPassE(NumberVector vec,
double weight)
First run in the E step.
|
void |
TwoPassMultivariateGaussianModel.firstPassE(NumberVector vec,
double wei)
First pass: update the mean only.
|
double |
MultivariateGaussianModel.mahalanobisDistance(NumberVector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
DiagonalGaussianModel.mahalanobisDistance(NumberVector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
SphericalGaussianModel.mahalanobisDistance(NumberVector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
TextbookMultivariateGaussianModel.mahalanobisDistance(NumberVector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
TwoPassMultivariateGaussianModel.mahalanobisDistance(NumberVector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
void |
MultivariateGaussianModel.updateE(NumberVector vec,
double wei) |
void |
EMClusterModel.updateE(NumberVector vec,
double weight)
Process one data point in the E step
|
void |
DiagonalGaussianModel.updateE(NumberVector vec,
double wei) |
void |
SphericalGaussianModel.updateE(NumberVector vec,
double wei) |
void |
TextbookMultivariateGaussianModel.updateE(NumberVector vec,
double wei) |
void |
TwoPassMultivariateGaussianModel.updateE(NumberVector vec,
double wei)
Second pass: compute the covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
static double |
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector> relation,
java.util.List<? extends EMClusterModel<?>> models,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
compute the expectation value of the current mixture of distributions.
|
static void |
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector> relation,
WritableDataStore<double[]> probClusterIGivenX,
java.util.List<? extends EMClusterModel<?>> models,
double prior)
Recompute the covariance matrixes.
|
Modifier and Type | Class and Description |
---|---|
class |
COPACNeighborPredicate<V extends NumberVector>
COPAC neighborhood predicate.
|
static class |
COPACNeighborPredicate.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
ERiCNeighborPredicate<V extends NumberVector>
ERiC neighborhood predicate.
|
static class |
ERiCNeighborPredicate.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
FourCNeighborPredicate<V extends NumberVector>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
static class |
FourCNeighborPredicate.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
LSDBC<O extends NumberVector>
Locally Scaled Density Based Clustering.
|
static class |
LSDBC.Parameterizer<O extends NumberVector>
Parameterization class
|
class |
PreDeConNeighborPredicate<V extends NumberVector>
Neighborhood predicate used by PreDeCon.
|
static class |
PreDeConNeighborPredicate.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private Relation<? extends NumberVector> |
ERiCNeighborPredicate.Instance.relation
Vector data relation.
|
Modifier and Type | Method and Description |
---|---|
boolean |
ERiCNeighborPredicate.Instance.strongNeighbors(NumberVector v1,
NumberVector v2,
PCAFilteredResult pca1,
PCAFilteredResult pca2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
Constructor and Description |
---|
Instance(DBIDs ids,
DataStore<PCAFilteredResult> storage,
Relation<? extends NumberVector> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected void |
ClusteringFeature.addToStatistics(NumberVector nv)
Add a number vector to the current node.
|
private ClusteringFeature |
CFTree.findLeaf(CFTree.TreeNode node,
NumberVector nv)
Find the leaf of a cluster, to get the final cluster assignment.
|
ClusteringFeature |
CFTree.findLeaf(NumberVector nv)
Find the leaf of a cluster, to get the final cluster assignment.
|
private CFTree.TreeNode |
CFTree.insert(CFTree.TreeNode node,
NumberVector nv)
Recursive insertion.
|
void |
CFTree.insert(NumberVector nv)
Insert a data point into the tree.
|
double |
DiameterCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n) |
double |
EuclideanDistanceCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n) |
double |
RadiusCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n) |
double |
BIRCHAbsorptionCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n)
Quality of a CF when adding a data point
|
double |
CentroidEuclideanDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
double |
BIRCHDistance.squaredDistance(NumberVector v,
ClusteringFeature cf)
Distance of a vector to a clustering feature.
|
double |
AverageIntraclusterDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
double |
VarianceIncreaseDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
double |
CentroidManhattanDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
double |
AverageInterclusterDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
static double |
ClusteringFeature.sumOfSquares(NumberVector v)
Compute the sum of squares of a vector.
|
Modifier and Type | Method and Description |
---|---|
CFTree |
CFTree.Factory.newTree(DBIDs ids,
Relation<? extends NumberVector> relation)
Make a new tree.
|
Clustering<MeanModel> |
BIRCHLeafClustering.run(Relation<NumberVector> relation)
Run the clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector,M extends Model>
Abstract base class for k-means implementations.
|
static class |
AbstractKMeans.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel>
Run K-Means multiple times, and keep the best run.
|
static class |
BestOfMultipleKMeans.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
interface |
KMeans<V extends NumberVector,M extends Model>
Some constants and options shared among kmeans family algorithms.
|
class |
KMeansAnnulus<V extends NumberVector>
Annulus k-means algorithm.
|
static class |
KMeansAnnulus.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansBisecting<V extends NumberVector,M extends MeanModel>
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
static class |
KMeansBisecting.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
class |
KMeansCompare<V extends NumberVector>
Compare-Means: Accelerated k-means by exploiting the triangle inequality and
pairwise distances of means to prune candidate means.
|
static class |
KMeansCompare.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansElkan<V extends NumberVector>
Elkan's fast k-means by exploiting the triangle inequality.
|
static class |
KMeansElkan.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansExponion<V extends NumberVector>
Newlings's exponion k-means algorithm, exploiting the triangle inequality.
|
static class |
KMeansExponion.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansHamerly<V extends NumberVector>
Hamerly's fast k-means by exploiting the triangle inequality.
|
static class |
KMeansHamerly.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansLloyd<V extends NumberVector>
The standard k-means algorithm, using bulk iterations and commonly attributed
to Lloyd and Forgy (independently).
|
static class |
KMeansLloyd.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansMacQueen<V extends NumberVector>
The original k-means algorithm, using MacQueen style incremental updates;
making this effectively an "online" (streaming) algorithm.
|
static class |
KMeansMacQueen.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansMinusMinus<V extends NumberVector>
k-means--: A Unified Approach to Clustering and Outlier Detection.
|
static class |
KMeansMinusMinus.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansSimplifiedElkan<V extends NumberVector>
Simplified version of Elkan's k-means by exploiting the triangle inequality.
|
static class |
KMeansSimplifiedElkan.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansSort<V extends NumberVector>
Sort-Means: Accelerated k-means by exploiting the triangle inequality and
pairwise distances of means to prune candidate means (with sorting).
|
static class |
KMeansSort.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMediansLloyd<V extends NumberVector>
k-medians clustering algorithm, but using Lloyd-style bulk iterations instead
of the more complicated approach suggested by Kaufman and Rousseeuw (see
KMedoidsPAM instead). |
static class |
KMediansLloyd.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
SingleAssignmentKMeans<V extends NumberVector>
Pseudo-k-Means variations, that assigns each object to the nearest center.
|
static class |
SingleAssignmentKMeans.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
XMeans<V extends NumberVector,M extends MeanModel>
X-means: Extending K-means with Efficient Estimation on the Number of
Clusters.
|
static class |
XMeans.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends NumberVector> |
AbstractKMeans.Instance.relation
Data relation.
|
Modifier and Type | Method and Description |
---|---|
protected double |
AbstractKMeans.Instance.distance(NumberVector x,
NumberVector y)
Compute a distance (and count the distance computations).
|
protected static void |
AbstractKMeans.incrementalUpdateMean(double[] mean,
NumberVector vec,
int newsize,
double op)
Compute an incremental update for the mean.
|
static void |
AbstractKMeans.minusEquals(double[] sum,
NumberVector vec)
Similar to VMath.minusEquals, but accepts a number vector.
|
static void |
AbstractKMeans.plusEquals(double[] sum,
NumberVector vec)
Similar to VMath.plusEquals, but accepts a number vector.
|
static void |
AbstractKMeans.plusMinusEquals(double[] add,
double[] sub,
NumberVector vec)
Add to one, remove from another.
|
private boolean |
KMeansMacQueen.Instance.updateMeanAndAssignment(int minIndex,
NumberVector fv,
DBIDIter iditer)
Try to update the cluster assignment.
|
Modifier and Type | Method and Description |
---|---|
protected Clustering<KMeansModel> |
AbstractKMeans.Instance.buildResult(boolean varstat,
Relation<? extends NumberVector> relation)
Build the result, recomputing the cluster variance if
varstat is
set to true. |
private static double[][] |
AbstractKMeans.denseMeans(java.util.List<? extends DBIDs> clusters,
double[][] means,
Relation<? extends NumberVector> relation)
Returns the mean vectors of the given clusters in the given database.
|
protected static double[][] |
AbstractKMeans.means(java.util.List<? extends DBIDs> clusters,
double[][] means,
Relation<? extends NumberVector> relation)
Returns the mean vectors of the given clusters in the given database.
|
protected double[][] |
KMediansLloyd.Instance.medians(java.util.List<? extends DBIDs> clusters,
double[][] medians,
Relation<? extends NumberVector> relation)
Returns the median vectors of the given clusters in the given database.
|
Constructor and Description |
---|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means) |
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means) |
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Instance(Relation<? extends NumberVector> relation,
NumberVectorDistanceFunction<?> df,
double[][] means)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
static class |
FirstKInitialMeans.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
SampleKMeansInitialization<V extends NumberVector>
Initialize k-means by running k-means on a sample of the data set only.
|
static class |
SampleKMeansInitialization.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
(package private) static double |
KMeansPlusPlusInitialMeans.initialWeights(WritableDoubleDataStore weights,
DBIDs ids,
NumberVector first,
DistanceQuery<? super NumberVector> distQ)
Initialize the weight list.
|
private static double |
KMeansPlusPlusInitialMeans.updateWeights(WritableDoubleDataStore weights,
DBIDs ids,
NumberVector latest,
DistanceQuery<? super NumberVector> distQ)
Update the weight list.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
PAMInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
FirstKInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
RandomUniformGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
KMeansInitialization.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means
|
double[][] |
ParkInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
FarthestSumPointsInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
PredefinedInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
LABInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
OstrovskyInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
RandomNormalGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
double[][] |
SampleKMeansInitialization.chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction) |
(package private) static void |
KMeansPlusPlusInitialMeans.chooseRemaining(Relation<? extends NumberVector> relation,
DBIDs ids,
DistanceQuery<NumberVector> distQ,
int k,
java.util.List<NumberVector> means,
WritableDoubleDataStore weights,
double weightsum,
java.util.Random random)
Choose remaining means, weighted by distance.
|
(package private) static void |
KMeansPlusPlusInitialMeans.chooseRemaining(Relation<? extends NumberVector> relation,
DBIDs ids,
DistanceQuery<NumberVector> distQ,
int k,
java.util.List<NumberVector> means,
WritableDoubleDataStore weights,
double weightsum,
java.util.Random random)
Choose remaining means, weighted by distance.
|
(package private) static void |
KMeansPlusPlusInitialMeans.chooseRemaining(Relation<? extends NumberVector> relation,
DBIDs ids,
DistanceQuery<NumberVector> distQ,
int k,
java.util.List<NumberVector> means,
WritableDoubleDataStore weights,
double weightsum,
java.util.Random random)
Choose remaining means, weighted by distance.
|
(package private) static double |
KMeansPlusPlusInitialMeans.initialWeights(WritableDoubleDataStore weights,
DBIDs ids,
NumberVector first,
DistanceQuery<? super NumberVector> distQ)
Initialize the weight list.
|
static double[][] |
AbstractKMeansInitialization.unboxVectors(java.util.List<? extends NumberVector> means)
Unbox database means to primitive means.
|
private static double |
KMeansPlusPlusInitialMeans.updateWeights(WritableDoubleDataStore weights,
DBIDs ids,
NumberVector latest,
DistanceQuery<? super NumberVector> distQ)
Update the weight list.
|
Modifier and Type | Class and Description |
---|---|
class |
KMeansProcessor<V extends NumberVector>
Parallel k-means implementation.
|
static class |
KMeansProcessor.Instance<V extends NumberVector>
Instance to process part of the data set, for a single iteration.
|
class |
ParallelLloydKMeans<V extends NumberVector>
Parallel implementation of k-Means clustering.
|
static class |
ParallelLloydKMeans.Parameterizer<V extends NumberVector>
Parameterization class
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeansQualityMeasure<O extends NumberVector>
Base class for evaluating clusterings by information criteria (such as AIC or
BIC).
|
interface |
KMeansQualityMeasure<O extends NumberVector>
Interface for computing the quality of a K-Means clustering.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static <V extends NumberVector> |
BayesianInformationCriterionZhao.logLikelihoodZhao(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
<V extends NumberVector> |
BayesianInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
BayesianInformationCriterionZhao.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
WithinClusterVarianceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
AkaikeInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
WithinClusterMeanDistanceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Variance contribution of a single cluster.
|
Modifier and Type | Method and Description |
---|---|
static int |
AbstractKMeansQualityMeasure.numberOfFreeParameters(Relation<? extends NumberVector> relation,
Clustering<? extends MeanModel> clustering)
Compute the number of free parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNKernelDensityMinimaClustering<V extends NumberVector>
Cluster one-dimensional data by splitting the data set on local minima after
performing kernel density estimation.
|
static class |
KNNKernelDensityMinimaClustering.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
DeLiClu<V extends NumberVector>
DeliClu: Density-Based Hierarchical Clustering
A hierarchical algorithm to find density-connected sets in a database,
closely related to OPTICS but exploiting the structure of a R-tree for
acceleration.
|
static class |
DeLiClu.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
FastOPTICS<V extends NumberVector>
FastOPTICS algorithm (Fast approximation of OPTICS)
Note that this is not FOPTICS as in "Fuzzy OPTICS"!
|
static class |
FastOPTICS.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
DiSH<V extends NumberVector>
Algorithm for detecting subspace hierarchies.
|
static class |
DiSH.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
DOC<V extends NumberVector>
DOC is a sampling based subspace clustering algorithm.
|
static class |
DOC.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
FastDOC<V extends NumberVector>
The heuristic variant of the DOC algorithm, FastDOC
Reference:
C.
|
static class |
FastDOC.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
HiSC<V extends NumberVector>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
of subspace clusters.
|
static class |
HiSC.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
P3C<V extends NumberVector>
P3C: A Robust Projected Clustering Algorithm.
|
static class |
P3C.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
PreDeCon<V extends NumberVector>
PreDeCon computes clusters of subspace preference weighted connected points.
|
static class |
PreDeCon.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
PROCLUS<V extends NumberVector>
The PROCLUS algorithm, an algorithm to find subspace clusters in high
dimensional spaces.
|
static class |
PROCLUS.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
SUBCLU<V extends NumberVector>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
shaped and positioned clusters in subspaces.
|
static class |
SUBCLU.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
private double |
PROCLUS.manhattanSegmentalDistance(NumberVector o1,
double[] o2,
long[] dimensions)
Returns the Manhattan segmental distance between o1 and o2 relative to the
specified dimensions.
|
private double |
PROCLUS.manhattanSegmentalDistance(NumberVector o1,
NumberVector o2,
long[] dimensions)
Returns the Manhattan segmental distance between o1 and o2 relative to the
specified dimensions.
|
private int |
DiSH.subspaceDimensionality(NumberVector v1,
NumberVector v2,
long[] pv1,
long[] pv2,
long[] commonPreferenceVector)
Compute the common subspace dimensionality of two vectors.
|
private void |
CLIQUE.updateMinMax(NumberVector featureVector,
double[] minima,
double[] maxima)
Updates the minima and maxima array according to the specified feature
vector.
|
protected static double |
DiSH.weightedDistance(NumberVector v1,
NumberVector v2,
long[] weightVector)
Computes the weighted distance between the two specified vectors according
to the given preference vector.
|
Modifier and Type | Method and Description |
---|---|
private java.util.List<CLIQUESubspace> |
CLIQUE.findDenseSubspaceCandidates(Relation<? extends NumberVector> database,
java.util.List<CLIQUESubspace> denseSubspaces)
Determines the
k -dimensional dense subspace candidates from the
specified (k-1) -dimensional dense subspaces. |
private java.util.List<CLIQUESubspace> |
CLIQUE.findDenseSubspaces(Relation<? extends NumberVector> database,
java.util.List<CLIQUESubspace> denseSubspaces)
Determines the
k -dimensional dense subspaces and performs a pruning
if this option is chosen. |
private java.util.List<CLIQUESubspace> |
CLIQUE.findOneDimensionalDenseSubspaceCandidates(Relation<? extends NumberVector> database)
Determines the one-dimensional dense subspace candidates by making a pass
over the database.
|
private java.util.List<CLIQUESubspace> |
CLIQUE.findOneDimensionalDenseSubspaces(Relation<? extends NumberVector> database)
Determines the one dimensional dense subspaces and performs a pruning if
this option is chosen.
|
private java.util.Collection<CLIQUEUnit> |
CLIQUE.initOneDimensionalUnits(Relation<? extends NumberVector> database)
Initializes and returns the one dimensional units.
|
Clustering<SubspaceModel> |
CLIQUE.run(Relation<? extends NumberVector> relation)
Performs the CLIQUE algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
boolean |
CLIQUEUnit.addFeatureVector(DBIDRef id,
NumberVector vector)
Adds the id of the specified feature vector to this unit, if this unit
contains the feature vector.
|
boolean |
CLIQUEUnit.contains(NumberVector vector)
Returns true, if the intervals of this unit contain the specified feature
vector.
|
Modifier and Type | Method and Description |
---|---|
protected double |
UKMeans.getExpectedRepDistance(NumberVector rep,
DiscreteUncertainObject uo)
Get expected distance between a Vector and an uncertain object
|
Constructor and Description |
---|
CKMeans(NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
int k,
int maxiter,
KMeansInitialization initializer)
Constructor that uses Lloyd's k-means algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
COP<V extends NumberVector>
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
Subspaces
Reference:
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Outlier Detection in Arbitrarily Oriented Subspaces Proc. |
static class |
COP.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
GaussianModel<V extends NumberVector>
Outlier detection based on the probability density of the single normal
distribution.
|
static class |
GaussianModel.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
GaussianUniformMixture<V extends NumberVector>
Outlier detection algorithm using a mixture model approach.
|
static class |
GaussianUniformMixture.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
SimpleCOP<V extends NumberVector>
Algorithm to compute local correlation outlier probability.
|
static class |
SimpleCOP.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
private static void |
COP.computeCentroid(double[] centroid,
Relation<? extends NumberVector> relation,
DBIDs ids)
Recompute the centroid of a set.
|
Modifier and Type | Class and Description |
---|---|
class |
ABOD<V extends NumberVector>
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
static class |
ABOD.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
FastABOD<V extends NumberVector>
Fast-ABOD (approximateABOF) version of
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
static class |
FastABOD.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
LBABOD<V extends NumberVector>
LB-ABOD (lower-bound) version of
Angle-Based Outlier Detection / Angle-Based Outlier Factor.
|
static class |
LBABOD.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
CBLOF<O extends NumberVector>
Cluster-based local outlier factor (CBLOF).
|
static class |
CBLOF.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
EMOutlier<V extends NumberVector>
Outlier detection algorithm using EM Clustering.
|
static class |
EMOutlier.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
KMeansOutlierDetection<O extends NumberVector>
Outlier detection by using k-means clustering.
|
static class |
KMeansOutlierDetection.Parameterizer<O extends NumberVector>
Parameterizer.
|
Modifier and Type | Method and Description |
---|---|
private double |
CBLOF.computeLargeClusterCBLOF(O obj,
NumberVectorDistanceFunction<? super O> distanceQuery,
NumberVector clusterMean,
Cluster<MeanModel> cluster) |
Modifier and Type | Method and Description |
---|---|
private double |
CBLOF.computeSmallClusterCBLOF(O obj,
NumberVectorDistanceFunction<? super O> distance,
java.util.List<NumberVector> largeClusterMeans,
Cluster<MeanModel> cluster) |
Modifier and Type | Class and Description |
---|---|
class |
HilOut<O extends NumberVector>
Fast Outlier Detection in High Dimensional Spaces
Outlier Detection using Hilbert space filling curves
Reference:
F.
|
static class |
HilOut.Parameterizer<O extends NumberVector>
Parameterization class
|
Modifier and Type | Method and Description |
---|---|
protected DoubleDBIDList |
ReferenceBasedOutlierDetection.computeDistanceVector(NumberVector refPoint,
Relation<? extends NumberVector> database,
PrimitiveDistanceQuery<? super NumberVector> distFunc)
Computes for each object the distance to one reference point.
|
private double |
HilOut.HilbertFeatures.getDimForObject(NumberVector obj,
int dim)
Get the (projected) position of the object in dimension dim.
|
Modifier and Type | Method and Description |
---|---|
protected DoubleDBIDList |
ReferenceBasedOutlierDetection.computeDistanceVector(NumberVector refPoint,
Relation<? extends NumberVector> database,
PrimitiveDistanceQuery<? super NumberVector> distFunc)
Computes for each object the distance to one reference point.
|
protected DoubleDBIDList |
ReferenceBasedOutlierDetection.computeDistanceVector(NumberVector refPoint,
Relation<? extends NumberVector> database,
PrimitiveDistanceQuery<? super NumberVector> distFunc)
Computes for each object the distance to one reference point.
|
OutlierResult |
ReferenceBasedOutlierDetection.run(Database database,
Relation<? extends NumberVector> relation)
Run the algorithm on the given relation.
|
Constructor and Description |
---|
ReferenceBasedOutlierDetection(int k,
NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
ReferencePointsHeuristic refp)
Constructor with parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
ALOCI<O extends NumberVector>
Fast Outlier Detection Using the "approximate Local Correlation Integral".
|
static class |
ALOCI.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
LDF<O extends NumberVector>
Outlier Detection with Kernel Density Functions.
|
static class |
LDF.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
SimpleKernelDensityLOF<O extends NumberVector>
A simple variant of the LOF algorithm, which uses a simple kernel density
estimation instead of the local reachability density.
|
static class |
SimpleKernelDensityLOF.Parameterizer<O extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
(package private) static class |
ALOCI.Node
Node of the ALOCI Quadtree
|
Modifier and Type | Field and Description |
---|---|
private Relation<? extends NumberVector> |
ALOCI.ALOCIQuadTree.relation
Relation indexed.
|
Modifier and Type | Method and Description |
---|---|
ALOCI.Node |
ALOCI.ALOCIQuadTree.findClosestNode(NumberVector vec,
int tlevel)
Find the closest node (of depth
tlevel or above, if there is no
node at this depth) for the given vector. |
private double |
ALOCI.ALOCIQuadTree.getShiftedDim(NumberVector obj,
int dim,
int level)
Shift and wrap a single dimension.
|
Constructor and Description |
---|
ALOCIQuadTree(double[] min,
double[] max,
double[] shift,
int nmin,
Relation<? extends NumberVector> relation)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
HiCS<V extends NumberVector>
Algorithm to compute High Contrast Subspaces for Density-Based Outlier
Ranking.
|
static class |
HiCS.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
private java.util.ArrayList<ArrayDBIDs> |
HiCS.buildOneDimIndexes(Relation<? extends NumberVector> relation)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
private void |
HiCS.calculateContrast(Relation<? extends NumberVector> relation,
HiCS.HiCSSubspace subspace,
java.util.ArrayList<ArrayDBIDs> subspaceIndex,
java.util.Random random)
Calculates the actual contrast of a given subspace.
|
private java.util.Set<HiCS.HiCSSubspace> |
HiCS.calculateSubspaces(Relation<? extends NumberVector> relation,
java.util.ArrayList<ArrayDBIDs> subspaceIndex,
java.util.Random random)
Identifies high contrast subspaces in a given full-dimensional database.
|
OutlierResult |
FeatureBagging.run(Database database,
Relation<NumberVector> relation)
Run the algorithm on a data set.
|
Modifier and Type | Class and Description |
---|---|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector>
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
static class |
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector>
Parameterization class
|
class |
CTLuMeanMultipleAttributes<N,O extends NumberVector>
Mean Approach is used to discover spatial outliers with multiple attributes.
|
static class |
CTLuMeanMultipleAttributes.Parameterizer<N,O extends NumberVector>
Parameterization class.
|
class |
CTLuMedianMultipleAttributes<N,O extends NumberVector>
Median Approach is used to discover spatial outliers with multiple
attributes.
|
static class |
CTLuMedianMultipleAttributes.Parameterizer<N,O extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
CTLuScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Run the algorithm.
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuMedianAlgorithm.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Database database,
Relation<V> relationx,
Relation<? extends NumberVector> relationy)
Run the algorithm
|
OutlierResult |
CTLuRandomWalkEC.run(Relation<P> spatial,
Relation<? extends NumberVector> relation)
Run the algorithm.
|
private Pair<DBIDVar,java.lang.Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector> relationy)
Run a single iteration of the GLS-SOD modeling step
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAggarwalYuOutlier<V extends NumberVector>
Abstract base class for the sparse-grid-cell based outlier detection of
Aggarwal and Yu.
|
class |
AggarwalYuEvolutionary<V extends NumberVector>
Evolutionary variant (EAFOD) of the high-dimensional outlier detection
algorithm by Aggarwal and Yu.
|
static class |
AggarwalYuEvolutionary.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
AggarwalYuNaive<V extends NumberVector>
BruteForce variant of the high-dimensional outlier detection algorithm by
Aggarwal and Yu.
|
static class |
AggarwalYuNaive.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
SOD<V extends NumberVector>
Subspace Outlier Degree.
|
static class |
SOD.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<? extends NumberVector> |
OUTRES.KernelDensityEstimator.relation
Relation to retrieve data from
|
Modifier and Type | Method and Description |
---|---|
private static double[] |
SOD.computePerDimensionVariances(Relation<? extends NumberVector> relation,
double[] center,
DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center.
|
private DoubleDBIDList |
OUTRES.initialRange(DBIDRef obj,
DBIDs cands,
PrimitiveDistanceFunction<? super NumberVector> df,
double eps,
OUTRES.KernelDensityEstimator kernel,
ModifiableDoubleDBIDList n)
Initial range query.
|
OutlierResult |
OUTRES.run(Relation<? extends NumberVector> relation)
Main loop for OUTRES
|
private DoubleDBIDList |
OUTRES.subsetNeighborhoodQuery(DoubleDBIDList neighc,
DBIDRef dbid,
PrimitiveDistanceFunction<? super NumberVector> df,
double adjustedEps,
OUTRES.KernelDensityEstimator kernel,
ModifiableDoubleDBIDList n)
Refine neighbors within a subset.
|
Constructor and Description |
---|
KernelDensityEstimator(Relation<? extends NumberVector> relation,
double eps)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
LibSVMOneClassOutlierDetection<V extends NumberVector>
Outlier-detection using one-class support vector machines.
|
static class |
LibSVMOneClassOutlierDetection.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrivialAverageCoordinateOutlier.run(Relation<? extends NumberVector> relation)
Run the actual algorithm.
|
OutlierResult |
TrivialGeneratedOutlier.run(Relation<Model> models,
Relation<NumberVector> vecs,
Relation<?> labels)
Run the algorithm
|
Modifier and Type | Class and Description |
---|---|
class |
EvaluateRankingQuality<V extends NumberVector>
Evaluate a distance function with respect to kNN queries.
|
static class |
EvaluateRankingQuality.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
RangeQuerySelectivity<V extends NumberVector>
Evaluate the range query selectivity.
|
static class |
RangeQuerySelectivity.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
protected double |
HopkinsStatisticClusteringTendency.computeNNForRealData(KNNQuery<NumberVector> knnQuery,
Relation<NumberVector> relation,
int dim)
Search nearest neighbors for real data members.
|
protected double |
HopkinsStatisticClusteringTendency.computeNNForRealData(KNNQuery<NumberVector> knnQuery,
Relation<NumberVector> relation,
int dim)
Search nearest neighbors for real data members.
|
protected double |
HopkinsStatisticClusteringTendency.computeNNForUniformData(KNNQuery<NumberVector> knnQuery,
double[] min,
double[] extend)
Search nearest neighbors for artificial, uniform data.
|
protected void |
HopkinsStatisticClusteringTendency.initializeDataExtends(Relation<NumberVector> relation,
int dim,
double[] min,
double[] extend)
Initialize the uniform sampling area.
|
Result |
HopkinsStatisticClusteringTendency.run(Database database,
Relation<NumberVector> relation)
Runs the algorithm in the timed evaluation part.
|
private ScalesResult |
AddUniformScale.run(Relation<? extends NumberVector> rel)
Add scales to a single vector relation.
|
private ScalesResult |
AddSingleScale.run(Relation<? extends NumberVector> rel)
Add scales to a single vector relation.
|
Constructor and Description |
---|
HopkinsStatisticClusteringTendency(NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
int samplesize,
RandomFactory random,
int rep,
int k,
double[] minima,
double[] maxima)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private double |
SigniTrendChangeDetection.Instance.processRow(DBIDRef iter,
NumberVector row,
ChangePoints changepoints)
Process one row, assuming a constant time interval.
|
Modifier and Type | Method and Description |
---|---|
ChangePoints |
SigniTrendChangeDetection.run(Relation<NumberVector> relation)
Executes Signi-Trend for given relation
|
ChangePoints |
SigniTrendChangeDetection.Instance.run(Relation<NumberVector> relation)
Process a relation.
|
Modifier and Type | Class and Description |
---|---|
class |
ComputeKNNOutlierScores<O extends NumberVector>
Application that runs a series of kNN-based algorithms on a data set, for
building an ensemble in a second step.
|
static class |
ComputeKNNOutlierScores.Parameterizer<O extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
static Relation<NumberVector> |
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
Relation<NumberVector> relation,
DBIDs skip)
Prescale each vector (except when in
skip ) with the given scaling
function. |
private PrimitiveDistanceFunction<NumberVector> |
GreedyEnsembleExperiment.getDistanceFunction(double[] estimated_weights) |
Modifier and Type | Method and Description |
---|---|
private boolean |
EvaluatePrecomputedOutlierScores.checkForNaNs(NumberVector vec)
Check for NaN values.
|
private void |
EvaluatePrecomputedOutlierScores.processRow(java.io.PrintStream fout,
NumberVector vec,
java.lang.String label) |
protected void |
GreedyEnsembleExperiment.singleEnsemble(double[] ensemble,
NumberVector vec)
Build a single-element "ensemble".
|
Modifier and Type | Method and Description |
---|---|
static Relation<NumberVector> |
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
Relation<NumberVector> relation,
DBIDs skip)
Prescale each vector (except when in
skip ) with the given scaling
function. |
Modifier and Type | Interface and Description |
---|---|
static interface |
NumberVector.Factory<V extends NumberVector>
Factory API for this feature vector.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SparseNumberVector
Combines the SparseFeatureVector and NumberVector.
|
Modifier and Type | Class and Description |
---|---|
class |
BitVector
Vector using a dense bit set encoding, based on
long[] storage. |
class |
ByteVector
Vector using
byte[] storage. |
class |
DoubleVector
Vector type using
double[] storage for real numbers. |
class |
FloatVector
Vector type using
float[] storage, thus needing approximately half as
much memory as DoubleVector . |
class |
IntegerVector
Vector type using
int[] storage. |
class |
OneDimensionalDoubleVector
Specialized class implementing a one-dimensional double vector without using
an array.
|
class |
ShortVector
Vector type using
short[] storage. |
class |
SparseByteVector
Sparse vector type, using
byte[] for storing the values, and
int[] for storing the indexes, approximately 5 bytes per non-zero
value (limited to -128..+127). |
class |
SparseDoubleVector
Sparse vector type, using
double[] for storing the values, and
int[] for storing the indexes, approximately 12 bytes per non-zero
value. |
class |
SparseFloatVector
Sparse vector type, using
float[] for storing the values, and
int[] for storing the indexes, approximately 8 bytes per non-zero
value. |
class |
SparseIntegerVector
Sparse vector type, using
int[] for storing the values, and
int[] for storing the indexes, approximately 8 bytes per non-zero
integer value. |
class |
SparseShortVector
Sparse vector type, using
short[] for storing the values, and
int[] for storing the indexes, approximately 6 bytes per non-zero
value. |
Modifier and Type | Field and Description |
---|---|
private Relation<? extends NumberVector> |
VectorUtil.SortDBIDsBySingleDimension.data
The relation to sort.
|
static VectorFieldTypeInformation<NumberVector> |
NumberVector.FIELD
Input type for algorithms that require number vector fields.
|
static VectorFieldTypeInformation<NumberVector> |
NumberVector.FIELD_1D
Type request for two-dimensional number vectors
|
static VectorFieldTypeInformation<NumberVector> |
NumberVector.FIELD_2D
Type request for two-dimensional number vectors
|
static VectorTypeInformation<NumberVector> |
NumberVector.VARIABLE_LENGTH
Number vectors of variable length.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
VectorUtil.project(V v,
long[] selectedAttributes,
NumberVector.Factory<V> factory)
Project a number vector to the specified attributes.
|
static <V extends NumberVector> |
VectorUtil.randomVector(NumberVector.Factory<V> factory,
int dim)
Produce a new vector based on random numbers in [0:1].
|
static <V extends NumberVector> |
VectorUtil.randomVector(NumberVector.Factory<V> factory,
int dim,
java.util.Random r)
Produce a new vector based on random numbers in [0:1].
|
Modifier and Type | Method and Description |
---|---|
static double |
VectorUtil.angle(NumberVector v1,
NumberVector v2,
NumberVector o)
Compute the angle between two vectors with respect to a reference point.
|
static double |
VectorUtil.angleDense(NumberVector v1,
NumberVector v2)
Compute the absolute cosine of the angle between two dense vectors.
|
static double |
VectorUtil.angleSparseDense(SparseNumberVector v1,
NumberVector v2)
Compute the angle for a sparse and a dense vector.
|
int |
VectorUtil.SortVectorsBySingleDimension.compare(NumberVector o1,
NumberVector o2) |
static double |
VectorUtil.cosAngle(NumberVector v1,
NumberVector v2)
Compute the absolute cosine of the angle between two vectors.
|
static double |
VectorUtil.dot(NumberVector v1,
NumberVector v2)
Compute the dot product of the angle between two vectors.
|
static double |
VectorUtil.dotDense(NumberVector v1,
NumberVector v2)
Compute the dot product of two dense vectors.
|
static double |
VectorUtil.dotSparseDense(SparseNumberVector v1,
NumberVector v2)
Compute the dot product for a sparse and a dense vector.
|
default V |
NumberVector.Factory.newNumberVector(NumberVector values)
Returns a new NumberVector of N for the given values.
|
Constructor and Description |
---|
SortDBIDsBySingleDimension(Relation<? extends NumberVector> data)
Constructor.
|
SortDBIDsBySingleDimension(Relation<? extends NumberVector> data,
int dim)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
CorrelationAnalysisSolution<V extends NumberVector>
A solution of correlation analysis is a matrix of equations describing the
dependencies.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
ModelUtil.getPrototype(Model model,
Relation<? extends V> relation,
NumberVector.Factory<V> factory)
Get (and convert!)
|
static <V extends NumberVector> |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends V> relation,
DBIDs ids,
NumberVector.Factory<V> factory)
Get the representative vector for a cluster model, or compute the centroid.
|
Modifier and Type | Method and Description |
---|---|
static NumberVector |
ModelUtil.getPrototype(Model model,
Relation<? extends NumberVector> relation)
Get the representative vector for a cluster model.
|
static NumberVector |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends NumberVector> relation,
DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid.
|
Modifier and Type | Method and Description |
---|---|
static NumberVector |
ModelUtil.getPrototype(Model model,
Relation<? extends NumberVector> relation)
Get the representative vector for a cluster model.
|
static NumberVector |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends NumberVector> relation,
DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid.
|
Modifier and Type | Class and Description |
---|---|
class |
LatLngToECEFProjection<V extends NumberVector>
Project (Latitude, Longitude) vectors to (X, Y, Z), from spherical
coordinates to ECEF (earth-centered earth-fixed).
|
class |
LngLatToECEFProjection<V extends NumberVector>
Project (Longitude, Latitude) vectors to (X, Y, Z), from spherical
coordinates to ECEF (earth-centered earth-fixed).
|
class |
NumericalFeatureSelection<V extends NumberVector>
Projection class for number vectors.
|
static class |
NumericalFeatureSelection.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
RandomProjection<V extends NumberVector>
Randomized projections of the data.
|
Modifier and Type | Method and Description |
---|---|
protected RandomProjection<NumberVector> |
RandomProjection.Parameterizer.makeInstance() |
protected LatLngToECEFProjection<NumberVector> |
LatLngToECEFProjection.Parameterizer.makeInstance() |
protected LngLatToECEFProjection<NumberVector> |
LngLatToECEFProjection.Parameterizer.makeInstance() |
Modifier and Type | Method and Description |
---|---|
double[] |
RandomProjectionFamily.Projection.project(NumberVector in)
Project a single vector.
|
double[] |
AbstractRandomProjectionFamily.MatrixProjection.project(NumberVector in) |
double[] |
RandomSubsetProjectionFamily.SubsetProjection.project(NumberVector in) |
double[] |
SimplifiedRandomHyperplaneProjectionFamily.SignedProjection.project(NumberVector in) |
double[] |
RandomProjectionFamily.Projection.project(NumberVector in,
double[] buffer)
Project a single vector, into the given buffer.
|
double[] |
AbstractRandomProjectionFamily.MatrixProjection.project(NumberVector in,
double[] ret) |
double[] |
RandomSubsetProjectionFamily.SubsetProjection.project(NumberVector in,
double[] buffer) |
double[] |
SimplifiedRandomHyperplaneProjectionFamily.SignedProjection.project(NumberVector vec,
double[] ret) |
private double[] |
SimplifiedRandomHyperplaneProjectionFamily.SignedProjection.projectDense(NumberVector in,
double[] ret)
Slower version, for dense multiplication.
|
Modifier and Type | Field and Description |
---|---|
static MultivariateSeriesTypeInformation<NumberVector> |
TypeUtil.MULTIVARIATE_SERIES
Type request for multivariate time series.
|
static VectorFieldTypeInformation<NumberVector> |
TypeUtil.NUMBER_VECTOR_FIELD
Input type for algorithms that require number vector fields.
|
static VectorFieldTypeInformation<? super NumberVector> |
TypeUtil.NUMBER_VECTOR_FIELD_1D
Type request for two-dimensional number vectors
|
static VectorFieldTypeInformation<? super NumberVector> |
TypeUtil.NUMBER_VECTOR_FIELD_2D
Type request for two-dimensional number vectors
|
static VectorTypeInformation<NumberVector> |
TypeUtil.NUMBER_VECTOR_VARIABLE_LENGTH
Number vectors of variable length.
|
Modifier and Type | Method and Description |
---|---|
protected static HyperBoundingBox |
AbstractUncertainObject.computeBounds(NumberVector[] samples)
Compute the bounding box for some samples.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearScanEuclideanDistanceKNNQuery<O extends NumberVector>
Instance of this query for a particular database.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearScanEuclideanDistanceRangeQuery<O extends NumberVector>
Optimized linear scan for Euclidean distance range queries.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
RelationUtil.getNumberVectorFactory(Relation<V> relation)
Get the number vector factory of a database relation.
|
static <V extends NumberVector,T extends NumberVector> |
RelationUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
static <V extends NumberVector,T extends NumberVector> |
RelationUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
Modifier and Type | Method and Description |
---|---|
static double[][] |
RelationUtil.computeMinMax(Relation<? extends NumberVector> relation)
Determines the minimum and maximum values in each dimension of all objects
stored in the given database.
|
static double[][] |
RelationUtil.relationAsMatrix(Relation<? extends NumberVector> relation,
ArrayDBIDs ids)
Copy a relation into a double matrix.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractVectorConversionFilter<I,O extends NumberVector>
Abstract class for filters that produce number vectors.
|
class |
AbstractVectorStreamConversionFilter<I,O extends NumberVector>
Abstract base class for streaming filters that produce vectors.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
FilterUtil.guessFactory(SimpleTypeInformation<V> in)
Try to guess the appropriate factory.
|
Modifier and Type | Class and Description |
---|---|
class |
VectorDimensionalityFilter<V extends NumberVector>
Filter to remove all vectors that do not have the desired dimensionality.
|
static class |
VectorDimensionalityFilter.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
AttributeWiseBetaNormalization<V extends NumberVector>
Project the data using a Beta distribution.
|
static class |
AttributeWiseBetaNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
AttributeWiseCDFNormalization<V extends NumberVector>
Class to perform and undo a normalization on real vectors by estimating the
distribution of values along each dimension independently, then rescaling
objects to the cumulative density function (CDF) value at the original
coordinate.
|
static class |
AttributeWiseCDFNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
AttributeWiseMADNormalization<V extends NumberVector>
Median Absolute Deviation is used for scaling the data set as follows:
First, the median, and median absolute deviation are computed in each axis.
|
class |
AttributeWiseMeanNormalization<V extends NumberVector>
Normalization designed for data with a meaningful zero:
The 0 is retained, and the data is linearly scaled to have a mean of 1, by projection with f(x) = x / mean(X). |
class |
AttributeWiseMinMaxNormalization<V extends NumberVector>
Class to perform and undo a normalization on real vectors with respect to
a given minimum and maximum in each dimension.
|
static class |
AttributeWiseMinMaxNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
AttributeWiseVarianceNormalization<V extends NumberVector>
Class to perform and undo a normalization on real vectors with respect to
given mean and standard deviation in each dimension.
|
static class |
AttributeWiseVarianceNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
(package private) java.util.List<? extends NumberVector> |
IntegerRankTieNormalization.Sorter.col
Column to use for sorting.
|
Modifier and Type | Method and Description |
---|---|
java.lang.Double |
AttributeWiseCDFNormalization.Adapter.get(java.util.List<? extends NumberVector> array,
int off) |
double |
AttributeWiseCDFNormalization.Adapter.getDouble(java.util.List<? extends NumberVector> array,
int off) |
long |
AttributeWiseCDFNormalization.Adapter.getLong(java.util.List<? extends NumberVector> array,
int off) |
void |
IntegerRankTieNormalization.Sorter.setup(java.util.List<? extends NumberVector> col,
int dim)
Configure the sorting class.
|
int |
AttributeWiseCDFNormalization.Adapter.size(java.util.List<? extends NumberVector> array) |
Modifier and Type | Class and Description |
---|---|
class |
HellingerHistogramNormalization<V extends NumberVector>
Normalize histograms by scaling them to unit absolute sum, then taking the
square root of the absolute value in each attribute, times the normalization
constant \(1/\sqrt{2}\).
|
class |
InstanceLogRankNormalization<V extends NumberVector>
Normalize vectors such that the smallest value of each instance is 0, the
largest is 1, but using \( \log_2(1+x) \).
|
class |
InstanceMeanVarianceNormalization<V extends NumberVector>
Normalize vectors such that they have zero mean and unit variance.
|
static class |
InstanceMeanVarianceNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
InstanceMinMaxNormalization<V extends NumberVector>
Normalize vectors with respect to a given minimum and maximum in each
dimension.
|
static class |
InstanceMinMaxNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
InstanceRankNormalization<V extends NumberVector>
Normalize vectors such that the smallest value of each instance is 0, the
largest is 1.
|
class |
LengthNormalization<V extends NumberVector>
Class to perform a normalization on vectors to norm 1.
|
static class |
LengthNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
Log1PlusNormalization<V extends NumberVector>
Normalize the data set by applying \( \frac{\log(1+|x|b)}{\log 1+b} \) to any
value.
|
static class |
Log1PlusNormalization.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
static HellingerHistogramNormalization<NumberVector> |
HellingerHistogramNormalization.STATIC
Static instance.
|
static Log1PlusNormalization<NumberVector> |
Log1PlusNormalization.STATIC
Static instance.
|
Modifier and Type | Method and Description |
---|---|
protected HellingerHistogramNormalization<NumberVector> |
HellingerHistogramNormalization.Parameterizer.makeInstance() |
protected InstanceLogRankNormalization<NumberVector> |
InstanceLogRankNormalization.Parameterizer.makeInstance() |
protected InstanceRankNormalization<NumberVector> |
InstanceRankNormalization.Parameterizer.makeInstance() |
Modifier and Type | Class and Description |
---|---|
class |
AbstractSupervisedProjectionVectorFilter<V extends NumberVector>
Base class for supervised projection methods.
|
static class |
AbstractSupervisedProjectionVectorFilter.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
ClassicMultidimensionalScalingTransform<I,O extends NumberVector>
Rescale the data set using multidimensional scaling, MDS.
|
static class |
ClassicMultidimensionalScalingTransform.Parameterizer<I,O extends NumberVector>
Parameterization class.
|
class |
FastMultidimensionalScalingTransform<I,O extends NumberVector>
Rescale the data set using multidimensional scaling, MDS.
|
static class |
FastMultidimensionalScalingTransform.Parameterizer<I,O extends NumberVector>
Parameterization class.
|
class |
GlobalPrincipalComponentAnalysisTransform<O extends NumberVector>
Apply Principal Component Analysis (PCA) to the data set.
|
static class |
GlobalPrincipalComponentAnalysisTransform.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
HistogramJitterFilter<V extends NumberVector>
Add Jitter, preserving the histogram properties (same sum, nonnegative).
|
class |
LatLngToECEFFilter<V extends NumberVector>
Project a 2D data set (latitude, longitude) to a 3D coordinate system (X, Y,
Z), such that Euclidean distance is line-of-sight.
|
static class |
LatLngToECEFFilter.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
LinearDiscriminantAnalysisFilter<V extends NumberVector>
Linear Discriminant Analysis (LDA) / Fisher's linear discriminant.
|
static class |
LinearDiscriminantAnalysisFilter.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
LngLatToECEFFilter<V extends NumberVector>
Project a 2D data set (longitude, latitude) to a 3D coordinate system (X, Y,
Z), such that Euclidean distance is line-of-sight.
|
static class |
LngLatToECEFFilter.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
NumberVectorFeatureSelectionFilter<V extends NumberVector>
Parser to project the ParsingResult obtained by a suitable base parser onto a
selected subset of attributes.
|
class |
NumberVectorRandomFeatureSelectionFilter<V extends NumberVector>
Parser to project the ParsingResult obtained by a suitable base parser onto a
randomly selected subset of attributes.
|
class |
PerturbationFilter<V extends NumberVector>
A filter to perturb the values by adding micro-noise.
|
static class |
PerturbationFilter.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
SplitNumberVectorFilter<V extends NumberVector>
Split an existing column into two types.
|
static class |
SplitNumberVectorFilter.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
protected SimpleTypeInformation<? super NumberVector> |
UncertainSplitFilter.getInputTypeRestriction() |
protected SimpleTypeInformation<? super NumberVector> |
WeightedUncertainSplitFilter.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
protected UnweightedDiscreteUncertainObject |
UncertainSplitFilter.filterSingleObject(NumberVector vec) |
protected WeightedDiscreteUncertainObject |
WeightedUncertainSplitFilter.filterSingleObject(NumberVector vec) |
Modifier and Type | Method and Description |
---|---|
protected SimpleTypeInformation<UnweightedDiscreteUncertainObject> |
UncertainSplitFilter.convertedType(SimpleTypeInformation<NumberVector> in) |
protected SimpleTypeInformation<WeightedDiscreteUncertainObject> |
WeightedUncertainSplitFilter.convertedType(SimpleTypeInformation<NumberVector> in) |
Modifier and Type | Class and Description |
---|---|
class |
CategorialDataAsNumberVectorParser<V extends NumberVector>
A very simple parser for categorial data, which will then be encoded as
numbers.
|
static class |
CategorialDataAsNumberVectorParser.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
NumberVectorLabelParser<V extends NumberVector>
Parser for a simple CSV type of format, with columns separated by the given
pattern (default: whitespace).
|
static class |
NumberVectorLabelParser.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected V |
NumberVectorLabelParser.curvec
Current vector.
|
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector> |
CanberraDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
ArcCosineDistanceFunction.getInputTypeRestriction() |
VectorFieldTypeInformation<? super NumberVector> |
MatrixWeightedQuadraticDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
CosineUnitlengthDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
CosineDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
AbstractNumberVectorDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
ClarkDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
ArcCosineUnitlengthDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
static int |
AbstractNumberVectorDistanceFunction.dimensionality(NumberVector o1,
NumberVector o2)
Get the common dimensionality of the two objects.
|
static int |
AbstractNumberVectorDistanceFunction.dimensionality(NumberVector o1,
NumberVector o2,
int expect)
Get the common dimensionality of the two objects.
|
double |
NumberVectorDistanceFunction.distance(NumberVector o1,
NumberVector o2)
Computes the distance between two given vectors according to this distance
function.
|
double |
CanberraDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
ArcCosineDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the cosine distance for two given feature vectors.
|
double |
BrayCurtisDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
MatrixWeightedQuadraticDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
double |
CosineUnitlengthDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the cosine distance for two given feature vectors.
|
double |
CosineDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the cosine distance for two given feature vectors.
|
double |
ClarkDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
WeightedCanberraDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
MahalanobisDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
double |
ArcCosineUnitlengthDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the cosine distance for two given feature vectors.
|
double |
MatrixWeightedQuadraticDistanceFunction.norm(NumberVector obj) |
double |
MahalanobisDistanceFunction.norm(NumberVector obj) |
Modifier and Type | Method and Description |
---|---|
double |
HistogramIntersectionDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
Modifier and Type | Method and Description |
---|---|
double |
SquaredUncenteredCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
AbsolutePearsonCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the absolute Pearson correlation distance for two given feature
vectors.
|
double |
WeightedPearsonCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the Pearson correlation distance for two given feature vectors.
|
double |
PearsonCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the Pearson correlation distance for two given feature vectors.
|
double |
AbsoluteUncenteredCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
WeightedSquaredPearsonCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
UncenteredCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Computes the Pearson correlation distance for two given feature vectors.
|
double |
SquaredPearsonCorrelationDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
static double |
UncenteredCorrelationDistanceFunction.uncenteredCorrelation(NumberVector x,
NumberVector y)
Compute the uncentered correlation of two vectors.
|
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector> |
DimensionSelectingLatLngDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
LatLngDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
LngLatDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
DimensionSelectingLatLngDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
double |
LatLngDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
double |
LngLatDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
Modifier and Type | Method and Description |
---|---|
double |
KolmogorovSmirnovDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
HistogramMatchDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector> |
WeightedLPNormDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
LPNormDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
SquaredEuclideanDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
ManhattanDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
WeightedLPNormDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
EuclideanDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
WeightedEuclideanDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
WeightedMaximumDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
MaximumDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
LPNormDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
WeightedManhattanDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
LPIntegerNormDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
MinimumDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
WeightedSquaredEuclideanDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
SquaredEuclideanDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
ManhattanDistanceFunction.norm(NumberVector v) |
double |
WeightedLPNormDistanceFunction.norm(NumberVector v) |
double |
EuclideanDistanceFunction.norm(NumberVector v) |
double |
WeightedEuclideanDistanceFunction.norm(NumberVector v) |
double |
WeightedMaximumDistanceFunction.norm(NumberVector v) |
double |
MaximumDistanceFunction.norm(NumberVector v) |
double |
LPNormDistanceFunction.norm(NumberVector v) |
double |
WeightedManhattanDistanceFunction.norm(NumberVector v) |
double |
LPIntegerNormDistanceFunction.norm(NumberVector v) |
double |
MinimumDistanceFunction.norm(NumberVector v) |
double |
WeightedSquaredEuclideanDistanceFunction.norm(NumberVector obj) |
double |
SquaredEuclideanDistanceFunction.norm(NumberVector v) |
private double |
ManhattanDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
WeightedLPNormDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
EuclideanDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
WeightedEuclideanDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
WeightedMaximumDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
MaximumDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
LPNormDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end)
Compute unscaled distance in a range of dimensions.
|
private double |
WeightedManhattanDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
LPIntegerNormDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end)
Compute unscaled distance in a range of dimensions.
|
private double |
SquaredEuclideanDistanceFunction.preDistance(NumberVector v1,
NumberVector v2,
int start,
int end) |
private double |
ManhattanDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
WeightedLPNormDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
EuclideanDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
WeightedEuclideanDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
WeightedMaximumDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
MaximumDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
LPNormDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end)
Compute unscaled distance in a range of dimensions.
|
private double |
WeightedManhattanDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
LPIntegerNormDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end)
Compute unscaled distance in a range of dimensions.
|
private double |
SquaredEuclideanDistanceFunction.preDistanceVM(NumberVector v,
SpatialComparable mbr,
int start,
int end) |
private double |
ManhattanDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
private double |
WeightedLPNormDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
private double |
EuclideanDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
private double |
WeightedEuclideanDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
private double |
WeightedMaximumDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
private double |
MaximumDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
private double |
LPNormDistanceFunction.preNorm(NumberVector v,
int start,
int end)
Compute unscaled norm in a range of dimensions.
|
private double |
WeightedManhattanDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
private double |
LPIntegerNormDistanceFunction.preNorm(NumberVector v,
int start,
int end)
Compute unscaled norm in a range of dimensions.
|
private double |
SquaredEuclideanDistanceFunction.preNorm(NumberVector v,
int start,
int end) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector> |
HellingerDistanceFunction.instantiate(Relation<T> database) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector> |
FisherRaoDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
HellingerDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
ChiSquaredDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
FisherRaoDistanceFunction.distance(NumberVector fv1,
NumberVector fv2) |
double |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
HellingerDistanceFunction.distance(NumberVector fv1,
NumberVector fv2) |
double |
ChiDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
KullbackLeiblerDivergenceAsymmetricDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
JeffreyDivergenceDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
TriangularDiscriminationDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
ChiSquaredDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
TriangularDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
JensenShannonDivergenceDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
SqrtJensenShannonDivergenceDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
HellingerDistanceFunction.similarity(NumberVector o1,
NumberVector o2) |
Modifier and Type | Method and Description |
---|---|
double |
HammingDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
double |
JaccardSimilarityDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
private double |
HammingDistanceFunction.hammingDistanceNumberVector(NumberVector o1,
NumberVector o2)
Version for number vectors.
|
static double |
JaccardSimilarityDistanceFunction.similarityNumberVector(NumberVector o1,
NumberVector o2)
Compute Jaccard similarity for two number vectors.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector> |
SubspaceLPNormDistanceFunction.instantiate(Relation<T> database) |
Modifier and Type | Method and Description |
---|---|
VectorFieldTypeInformation<? super NumberVector> |
SubspaceLPNormDistanceFunction.getInputTypeRestriction() |
VectorTypeInformation<? super NumberVector> |
OnedimensionalDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
SubspaceLPNormDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
SubspaceMaximumDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
OnedimensionalDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
SubspaceManhattanDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
SubspaceEuclideanDistanceFunction.distance(NumberVector v1,
NumberVector v2)
Constructor.
|
protected double |
SubspaceLPNormDistanceFunction.minDistObject(SpatialComparable mbr,
NumberVector v) |
protected double |
SubspaceMaximumDistanceFunction.minDistObject(SpatialComparable mbr,
NumberVector v) |
protected double |
SubspaceManhattanDistanceFunction.minDistObject(SpatialComparable mbr,
NumberVector v) |
protected double |
SubspaceEuclideanDistanceFunction.minDistObject(SpatialComparable mbr,
NumberVector v) |
double |
SubspaceLPNormDistanceFunction.norm(NumberVector obj) |
double |
SubspaceMaximumDistanceFunction.norm(NumberVector obj) |
double |
OnedimensionalDistanceFunction.norm(NumberVector obj) |
double |
SubspaceManhattanDistanceFunction.norm(NumberVector obj) |
double |
SubspaceEuclideanDistanceFunction.norm(NumberVector obj) |
Modifier and Type | Method and Description |
---|---|
VectorTypeInformation<? super NumberVector> |
LCSSDistanceFunction.getInputTypeRestriction() |
VectorTypeInformation<? super NumberVector> |
AbstractEditDistanceFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
protected double |
DerivativeDTWDistanceFunction.derivative(int i,
NumberVector v)
Given a NumberVector and the position of an element, approximates the
gradient of given element.
|
double |
LCSSDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
DerivativeDTWDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
ERPDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
DTWDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
double |
EDRDistanceFunction.distance(NumberVector v1,
NumberVector v2) |
protected void |
DerivativeDTWDistanceFunction.firstRow(double[] buf,
int band,
NumberVector v1,
NumberVector v2,
int dim2) |
protected void |
ERPDistanceFunction.firstRow(double[] buf,
int band,
NumberVector v1,
NumberVector v2,
int dim2) |
protected void |
DTWDistanceFunction.firstRow(double[] buf,
int band,
NumberVector v1,
NumberVector v2,
int dim2)
Fill the first row.
|
double |
LCSSDistanceFunction.getRange(NumberVector v1,
int dim1,
NumberVector v2,
int dim2) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector> |
Kulczynski1SimilarityFunction.instantiate(Relation<T> database) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector> |
AbstractVectorSimilarityFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
Kulczynski1SimilarityFunction.distance(NumberVector v1,
NumberVector v2) |
double |
Kulczynski2SimilarityFunction.similarity(NumberVector v1,
NumberVector v2) |
double |
Kulczynski1SimilarityFunction.similarity(NumberVector v1,
NumberVector v2) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector> |
PolynomialKernelFunction.instantiate(Relation<T> database) |
Modifier and Type | Method and Description |
---|---|
double |
LinearKernelFunction.distance(NumberVector fv1,
NumberVector fv2) |
double |
PolynomialKernelFunction.distance(NumberVector fv1,
NumberVector fv2) |
double |
LaplaceKernelFunction.similarity(NumberVector o1,
NumberVector o2) |
double |
RadialBasisFunctionKernelFunction.similarity(NumberVector o1,
NumberVector o2) |
double |
LinearKernelFunction.similarity(NumberVector o1,
NumberVector o2) |
double |
SigmoidKernelFunction.similarity(NumberVector o1,
NumberVector o2) |
double |
RationalQuadraticKernelFunction.similarity(NumberVector o1,
NumberVector o2) |
double |
PolynomialKernelFunction.similarity(NumberVector o1,
NumberVector o2) |
Modifier and Type | Field and Description |
---|---|
private PrimitiveDistanceFunction<NumberVector> |
EvaluateConcordantPairs.Parameterizer.distance
Distance function to use.
|
private PrimitiveDistanceFunction<? super NumberVector> |
EvaluateConcordantPairs.distanceFunction
Distance function to use.
|
Modifier and Type | Method and Description |
---|---|
protected EvaluateVarianceRatioCriteria<? extends NumberVector> |
EvaluateVarianceRatioCriteria.Parameterizer.makeInstance() |
Modifier and Type | Method and Description |
---|---|
static int |
EvaluateSimplifiedSilhouette.centroids(Relation<? extends NumberVector> rel,
java.util.List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Compute centroids.
|
static int |
EvaluateVarianceRatioCriteria.globalCentroid(Centroid overallCentroid,
Relation<? extends NumberVector> rel,
java.util.List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Update the global centroid.
|
double[] |
EvaluateDaviesBouldin.withinGroupDistances(Relation<? extends NumberVector> rel,
java.util.List<? extends Cluster<?>> clusters,
NumberVector[] centroids) |
Modifier and Type | Method and Description |
---|---|
static int |
EvaluateSimplifiedSilhouette.centroids(Relation<? extends NumberVector> rel,
java.util.List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Compute centroids.
|
protected double[] |
EvaluateConcordantPairs.computeWithinDistances(Relation<? extends NumberVector> rel,
java.util.List<? extends Cluster<?>> clusters,
int withinPairs) |
double |
EvaluateSquaredErrors.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateConcordantPairs.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateVarianceRatioCriteria.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSimplifiedSilhouette.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluatePBMIndex.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateDaviesBouldin.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
static int |
EvaluateVarianceRatioCriteria.globalCentroid(Centroid overallCentroid,
Relation<? extends NumberVector> rel,
java.util.List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Update the global centroid.
|
double[] |
EvaluateDaviesBouldin.withinGroupDistances(Relation<? extends NumberVector> rel,
java.util.List<? extends Cluster<?>> clusters,
NumberVector[] centroids) |
Constructor and Description |
---|
EvaluateConcordantPairs(PrimitiveDistanceFunction<? super NumberVector> distance,
NoiseHandling noiseHandling)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) NumberVector |
VectorZero.vec
Vector to use as reference
|
(package private) NumberVector |
VectorOverThreshold.vec
Vector to use as reference
|
protected NumberVector |
AbstractVectorIter.vec
Data vector.
|
Constructor and Description |
---|
AbstractVectorIter(NumberVector vec)
Constructor.
|
DecreasingVectorIter(NumberVector vec)
Constructor.
|
IncreasingVectorIter(NumberVector vec)
Constructor.
|
VectorNonZero(NumberVector vec)
Constructor.
|
VectorOverThreshold(NumberVector vec,
double threshold)
Constructor.
|
VectorZero(NumberVector vec)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
InMemoryInvertedIndex<V extends NumberVector>
Simple index using inverted lists, for cosine distance only.
|
static class |
InMemoryInvertedIndex.Factory<V extends NumberVector>
Index factory
|
static class |
InMemoryInvertedIndex.Factory.Parameterizer<V extends NumberVector>
Parameterizer for inverted list index.
|
Modifier and Type | Method and Description |
---|---|
private double |
InMemoryInvertedIndex.naiveQueryDense(NumberVector obj,
WritableDoubleDataStore scores,
HashSetModifiableDBIDs cands)
Query the most similar objects, dense version.
|
Modifier and Type | Method and Description |
---|---|
java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>> |
AbstractProjectedHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector> relation,
int l) |
java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>> |
CosineHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector> relation,
int l) |
Modifier and Type | Method and Description |
---|---|
java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>> |
AbstractProjectedHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector> relation,
int l) |
java.util.ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>> |
CosineHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector> relation,
int l) |
Modifier and Type | Method and Description |
---|---|
int |
MultipleProjectionsLocalitySensitiveHashFunction.hashObject(NumberVector vec) |
int |
CosineLocalitySensitiveHashFunction.hashObject(NumberVector obj) |
int |
MultipleProjectionsLocalitySensitiveHashFunction.hashObject(NumberVector vec,
double[] buf) |
int |
CosineLocalitySensitiveHashFunction.hashObject(NumberVector obj,
double[] buf) |
Modifier and Type | Class and Description |
---|---|
class |
RandomProjectedNeighborsAndDensities<V extends NumberVector>
Random Projections used for computing neighbors and density estimates.
|
Modifier and Type | Method and Description |
---|---|
protected RandomProjectedNeighborsAndDensities<NumberVector> |
RandomProjectedNeighborsAndDensities.Parameterizer.makeInstance() |
Modifier and Type | Class and Description |
---|---|
class |
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector>
Class to materialize the kNN using a spatial join on an R-tree.
|
static class |
KNNJoinMaterializeKNNPreprocessor.Factory<O extends NumberVector>
The parameterizable factory.
|
static class |
KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector>
Parameterization class
|
class |
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
static class |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
The parameterizable factory.
|
static class |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
Parameterization class.
|
class |
NaiveProjectedKNNPreprocessor<O extends NumberVector>
Compute the approximate k nearest neighbors using 1 dimensional projections.
|
static class |
NaiveProjectedKNNPreprocessor.Factory<V extends NumberVector>
Index factory class
|
class |
SpacefillingKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves.
|
static class |
SpacefillingKNNPreprocessor.Factory<V extends NumberVector>
Index factory class
|
class |
SpacefillingMaterializeKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves.
|
static class |
SpacefillingMaterializeKNNPreprocessor.Factory<V extends NumberVector>
Index factory class
|
static class |
SpacefillingMaterializeKNNPreprocessor.Factory.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
Modifier and Type | Field and Description |
---|---|
(package private) java.util.List<java.util.List<SpatialPair<DBID,NumberVector>>> |
SpacefillingKNNPreprocessor.curves
Curve storage
|
Modifier and Type | Method and Description |
---|---|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector> relation) |
Modifier and Type | Method and Description |
---|---|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector> relation) |
Constructor and Description |
---|
Factory(int k,
DistanceFunction<? super NumberVector> distanceFunction)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractFilteredPCAIndex<NV extends NumberVector>
Abstract base class for a local PCA based index.
|
static class |
AbstractFilteredPCAIndex.Factory<NV extends NumberVector>
Factory class.
|
static class |
AbstractFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector,I extends AbstractFilteredPCAIndex<NV>>
Parameterization class.
|
interface |
FilteredLocalPCAIndex<NV extends NumberVector>
Interface for an index providing local PCA results.
|
static interface |
FilteredLocalPCAIndex.Factory<NV extends NumberVector>
Factory interface
|
class |
KNNQueryFilteredPCAIndex<NV extends NumberVector>
Provides the local neighborhood to be considered in the PCA as the k nearest
neighbors of an object.
|
static class |
KNNQueryFilteredPCAIndex.Factory<V extends NumberVector>
Factory class.
|
static class |
KNNQueryFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractPreferenceVectorIndex<NV extends NumberVector>
Abstract base class for preference vector based algorithms.
|
static class |
AbstractPreferenceVectorIndex.Factory<V extends NumberVector>
Factory class.
|
class |
DiSHPreferenceVectorIndex<V extends NumberVector>
Preprocessor for DiSH preference vector assignment to objects of a certain
database.
|
static class |
DiSHPreferenceVectorIndex.Factory<V extends NumberVector>
Factory class.
|
static class |
DiSHPreferenceVectorIndex.Factory.Parameterizer<V extends NumberVector>
Parameterization class.
|
class |
HiSCPreferenceVectorIndex<V extends NumberVector>
Preprocessor for HiSC preference vector assignment to objects of a certain
database.
|
static class |
HiSCPreferenceVectorIndex.Factory<V extends NumberVector>
Factory class.
|
static class |
HiSCPreferenceVectorIndex.Factory.Parameterizer<V extends NumberVector>
Parameterization class.
|
interface |
PreferenceVectorIndex<NV extends NumberVector>
Interface for an index providing preference vectors.
|
static interface |
PreferenceVectorIndex.Factory<V extends NumberVector>
Factory interface
|
Modifier and Type | Class and Description |
---|---|
class |
LatLngAsECEFIndex<O extends NumberVector>
Index a 2d data set (consisting of Lat/Lng pairs) by using a projection to 3D
coordinates (WGS-86 to ECEF).
|
static class |
LatLngAsECEFIndex.Factory<O extends NumberVector>
Index factory.
|
static class |
LatLngAsECEFIndex.Factory.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
LngLatAsECEFIndex<O extends NumberVector>
Index a 2d data set (consisting of Lng/Lat pairs) by using a projection to 3D
coordinates (WGS-86 to ECEF).
|
static class |
LngLatAsECEFIndex.Factory<O extends NumberVector>
Index factory.
|
static class |
LngLatAsECEFIndex.Factory.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
PINN<O extends NumberVector>
Projection-Indexed nearest-neighbors (PINN) is an index to retrieve the
nearest neighbors in high dimensional spaces by using a random projection
based index.
|
static class |
PINN.Parameterizer<O extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
SpatialPointLeafEntry
Represents an entry in a leaf node of a spatial index.
|
Constructor and Description |
---|
SpatialPointLeafEntry(DBID id,
NumberVector vector)
Constructor from number vector.
|
Modifier and Type | Class and Description |
---|---|
class |
MinimalisticMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree.
|
static class |
MinimalisticMemoryKDTree.Factory<O extends NumberVector>
Factory class
|
static class |
MinimalisticMemoryKDTree.Factory.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
SmallMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree.
|
static class |
SmallMemoryKDTree.Factory<O extends NumberVector>
Factory class
|
static class |
SmallMemoryKDTree.Factory.Parameterizer<O extends NumberVector>
Parameterization class.
|
Constructor and Description |
---|
CountSortAccesses(Counter objaccess,
Relation<? extends NumberVector> data)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractRStarTreeFactory<O extends NumberVector,N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,S extends RTreeSettings>
Abstract factory for R*-Tree based trees.
|
static class |
AbstractRStarTreeFactory.Parameterizer<O extends NumberVector,S extends RTreeSettings>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
DeLiCluTreeFactory<O extends NumberVector>
Factory for DeLiClu R*-Trees.
|
static class |
DeLiCluTreeFactory.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
DeLiCluTreeIndex<O extends NumberVector>
The common use of the DeLiClu tree: indexing number vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
DeLiCluLeafEntry
Defines the requirements for a leaf entry in an DeLiClu-Tree node.
|
Constructor and Description |
---|
DeLiCluLeafEntry(DBID id,
NumberVector vector)
Constructs a new LeafEntry object with the given parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
FlatRStarTreeFactory<O extends NumberVector>
Factory for flat R*-Trees.
|
static class |
FlatRStarTreeFactory.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
FlatRStarTreeIndex<O extends NumberVector>
The common use of the flat rstar tree: indexing number vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
EuclideanRStarTreeKNNQuery<O extends NumberVector>
Instance of a KNN query for a particular spatial index.
|
class |
EuclideanRStarTreeRangeQuery<O extends NumberVector>
Instance of a range query for a particular spatial index.
|
Modifier and Type | Class and Description |
---|---|
class |
RdKNNTree<O extends NumberVector>
RDkNNTree is a spatial index structure based on the concepts of the R*-Tree
supporting efficient processing of reverse k nearest neighbor queries.
|
class |
RdKNNTreeFactory<O extends NumberVector>
Factory for RdKNN R*-Trees.
|
static class |
RdKNNTreeFactory.Parameterizer<O extends NumberVector>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
RdKNNLeafEntry
Represents an entry in a leaf node of an RdKNN-Tree.
|
Modifier and Type | Field and Description |
---|---|
(package private) SpatialPrimitiveDistanceFunction<NumberVector> |
RdkNNSettings.distanceFunction
The distance function.
|
Constructor and Description |
---|
RdKNNLeafEntry(DBID id,
NumberVector vector,
double knnDistance)
Constructs a new RDkNNLeafEntry object with the given parameters.
|
Constructor and Description |
---|
RdkNNSettings(int k_max,
SpatialPrimitiveDistanceFunction<NumberVector> distanceFunction)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
RStarTreeFactory<O extends NumberVector>
Factory for regular R*-Trees.
|
static class |
RStarTreeFactory.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
RStarTreeIndex<O extends NumberVector>
The common use of the rstar tree: indexing number vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
PartialVAFile<V extends NumberVector>
PartialVAFile.
|
static class |
PartialVAFile.Factory<V extends NumberVector>
Index factory class.
|
class |
VAFile<V extends NumberVector>
Vector-approximation file (VAFile)
Reference:
R.
|
static class |
VAFile.Factory<V extends NumberVector>
Index factory class.
|
Modifier and Type | Method and Description |
---|---|
protected static VectorApproximation |
PartialVAFile.calculatePartialApproximation(DBID id,
NumberVector dv,
java.util.List<DoubleObjPair<DAFile>> daFiles)
Calculate partial vector approximation.
|
protected static void |
PartialVAFile.calculateSelectivityCoeffs(java.util.List<DoubleObjPair<DAFile>> daFiles,
NumberVector query,
double epsilon)
Calculate selectivity coefficients.
|
private void |
VALPNormDistance.initializeLookupTable(double[][] splitPositions,
NumberVector query,
double p)
Initialize the lookup table.
|
Constructor and Description |
---|
VALPNormDistance(double p,
double[][] splitPositions,
NumberVector query,
VectorApproximation queryApprox)
Constructor.
|
Constructor and Description |
---|
DAFile(Relation<? extends NumberVector> relation,
int dimension,
int partitions)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static double |
PearsonCorrelation.coefficient(NumberVector x,
NumberVector y)
Compute the Pearson product-moment correlation coefficient for two
NumberVectors.
|
static double |
PearsonCorrelation.weightedCoefficient(NumberVector x,
NumberVector y,
double[] weights)
Compute the Pearson product-moment correlation coefficient for two
NumberVectors.
|
static double |
PearsonCorrelation.weightedCoefficient(NumberVector x,
NumberVector y,
NumberVector weights)
Compute the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
Modifier and Type | Class and Description |
---|---|
class |
Centroid
Class to compute the centroid of some data.
|
class |
ProjectedCentroid
Centroid only using a subset of dimensions.
|
Modifier and Type | Method and Description |
---|---|
<F extends NumberVector> |
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
Get the mean as vector.
|
Modifier and Type | Method and Description |
---|---|
void |
Centroid.put(NumberVector val)
Add a single value with weight 1.0.
|
void |
CovarianceMatrix.put(NumberVector val)
Add a single value with weight 1.0.
|
void |
ProjectedCentroid.put(NumberVector val)
Add a single value with weight 1.0.
|
void |
Centroid.put(NumberVector val,
double weight)
Add data with a given weight.
|
void |
CovarianceMatrix.put(NumberVector val,
double weight)
Add data with a given weight.
|
void |
ProjectedCentroid.put(NumberVector val,
double weight)
Add data with a given weight.
|
Modifier and Type | Method and Description |
---|---|
static ProjectedCentroid |
ProjectedCentroid.make(long[] dims,
Relation<? extends NumberVector> relation)
Static Constructor from a relation.
|
static ProjectedCentroid |
ProjectedCentroid.make(long[] dims,
Relation<? extends NumberVector> relation,
DBIDs ids)
Static Constructor from a relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector> relation)
Static Constructor from a full relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector> relation,
DBIDs ids)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector> relation,
DBIDs ids)
Static Constructor from a full relation.
|
Modifier and Type | Field and Description |
---|---|
private PrimitiveDistanceFunction<? super NumberVector> |
WeightedCovarianceMatrixBuilder.weightDistance
Holds the distance function used for weight calculation.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> relation)
Weighted Covariance Matrix for a set of IDs.
|
PCAResult |
AutotuningPCA.processIds(DBIDs ids,
Relation<? extends NumberVector> database) |
double[][] |
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs.
|
double[][] |
CovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs.
|
PCAResult |
PCARunner.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Run PCA on a collection of database IDs.
|
double[][] |
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> relation) |
PCAResult |
AutotuningPCA.processQueryResult(DoubleDBIDList results,
Relation<? extends NumberVector> database) |
PCAResult |
PCARunner.processQueryResult(DoubleDBIDList results,
Relation<? extends NumberVector> database)
Run PCA on a QueryResult Collection.
|
default double[][] |
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a QueryResult Collection.
|
double[][] |
WeightedCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
default double[][] |
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
default double[][] |
CovarianceMatrixBuilder.processRelation(Relation<? extends NumberVector> relation)
Compute Covariance Matrix for a complete relation.
|
Modifier and Type | Method and Description |
---|---|
byte[] |
ZCurveTransformer.asByteArray(NumberVector vector)
Transform a single vector.
|
Constructor and Description |
---|
ZCurveTransformer(Relation<? extends NumberVector> relation,
DBIDs ids)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
java.util.Map<java.lang.Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
java.lang.Number |
NumberVectorAdapter.get(NumberVector array,
int off)
Deprecated.
|
byte |
NumberVectorAdapter.getByte(NumberVector array,
int off) |
double |
NumberVectorAdapter.getDouble(NumberVector array,
int off) |
float |
NumberVectorAdapter.getFloat(NumberVector array,
int off) |
int |
NumberVectorAdapter.getInteger(NumberVector array,
int off) |
long |
NumberVectorAdapter.getLong(NumberVector array,
int off) |
short |
NumberVectorAdapter.getShort(NumberVector array,
int off) |
int |
NumberVectorAdapter.size(NumberVector array) |
static double[] |
ArrayLikeUtil.toPrimitiveDoubleArray(NumberVector obj)
Convert a number vector to
double[] . |
static float[] |
ArrayLikeUtil.toPrimitiveFloatArray(NumberVector obj)
Convert a number vector to
float[] . |
static int[] |
ArrayLikeUtil.toPrimitiveIntegerArray(NumberVector obj)
Convert a number vector to
int[] . |
Modifier and Type | Method and Description |
---|---|
java.util.Collection<? extends NumberVector> |
ReferencePointsHeuristic.getReferencePoints(Relation<? extends NumberVector> db)
Get the reference points for the given database.
|
java.util.Collection<? extends NumberVector> |
GridBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
RandomGeneratedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
StarBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
FullDatabaseReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
AxisBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
RandomSampleReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
Modifier and Type | Method and Description |
---|---|
java.util.Collection<? extends NumberVector> |
ReferencePointsHeuristic.getReferencePoints(Relation<? extends NumberVector> db)
Get the reference points for the given database.
|
java.util.Collection<? extends NumberVector> |
GridBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
RandomGeneratedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
StarBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
FullDatabaseReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
AxisBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
java.util.Collection<? extends NumberVector> |
RandomSampleReferencePoints.getReferencePoints(Relation<? extends NumberVector> db) |
Modifier and Type | Class and Description |
---|---|
class |
OpenGL3DParallelCoordinates<O extends NumberVector>
Simple JOGL2 based parallel coordinates visualization.
|
static class |
OpenGL3DParallelCoordinates.Instance<O extends NumberVector>
Visualizer instance.
|
static class |
OpenGL3DParallelCoordinates.Parameterizer<O extends NumberVector>
Parameterization class.
|
class |
Parallel3DRenderer<O extends NumberVector>
Renderer for 3D parallel plots.
|
Modifier and Type | Method and Description |
---|---|
static double[] |
AbstractLayout3DPC.computeSimilarityMatrix(DependenceMeasure sim,
Relation<? extends NumberVector> rel)
Compute a column-wise dependency matrix for the given relation.
|
Layout |
AbstractLayout3DPC.layout(Relation<? extends NumberVector> rel) |
Modifier and Type | Method and Description |
---|---|
<NV extends NumberVector> |
AbstractFullProjection.projectRelativeRenderToDataSpace(double[] v,
NumberVector.Factory<NV> prototype)
Project a relative vector from rendering space to data space.
|
<NV extends NumberVector> |
FullProjection.projectRelativeRenderToDataSpace(double[] v,
NumberVector.Factory<NV> prototype)
Project a relative vector from rendering space to data space.
|
<NV extends NumberVector> |
AbstractFullProjection.projectRelativeScaledToDataSpace(double[] v,
NumberVector.Factory<NV> prototype)
Project a relative vector from scaled space to data space.
|
<NV extends NumberVector> |
FullProjection.projectRelativeScaledToDataSpace(double[] v,
NumberVector.Factory<NV> prototype)
Project a relative vector from scaled space to data space.
|
<NV extends NumberVector> |
AbstractFullProjection.projectRenderToDataSpace(double[] v,
NumberVector.Factory<NV> prototype)
Project a vector from rendering space to data space.
|
<NV extends NumberVector> |
FullProjection.projectRenderToDataSpace(double[] v,
NumberVector.Factory<NV> prototype)
Project a vector from rendering space to data space.
|
<NV extends NumberVector> |
AbstractFullProjection.projectScaledToDataSpace(double[] v,
NumberVector.Factory<NV> factory)
Project a vector from scaled space to data space.
|
<NV extends NumberVector> |
FullProjection.projectScaledToDataSpace(double[] v,
NumberVector.Factory<NV> factory)
Project a vector from scaled space to data space.
|
Modifier and Type | Method and Description |
---|---|
double[] |
SimpleParallel.fastProjectDataToRenderSpace(NumberVector data) |
double[] |
AffineProjection.fastProjectDataToRenderSpace(NumberVector data) |
double[] |
ProjectionParallel.fastProjectDataToRenderSpace(NumberVector v)
Fast project a vector from data to render space
|
double[] |
Projection2D.fastProjectDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
double |
Simple1D.fastProjectDataToRenderSpace(NumberVector data) |
double |
Projection1D.fastProjectDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
double[] |
Simple2D.fastProjectDataToRenderSpace(NumberVector data) |
double[] |
AffineProjection.fastProjectDataToScaledSpace(NumberVector data) |
double[] |
Projection2D.fastProjectDataToScaledSpace(NumberVector data)
Project a data vector from data space to scaled space.
|
double[] |
Simple2D.fastProjectDataToScaledSpace(NumberVector data) |
double[] |
AffineProjection.fastProjectRelativeDataToRenderSpace(NumberVector data) |
double[] |
Projection2D.fastProjectRelativeDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
double |
Simple1D.fastProjectRelativeDataToRenderSpace(NumberVector data) |
double |
Projection1D.fastProjectRelativeDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
double[] |
Simple2D.fastProjectRelativeDataToRenderSpace(NumberVector data) |
double[] |
AbstractFullProjection.projectDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
double[] |
FullProjection.projectDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
double[] |
AbstractFullProjection.projectDataToScaledSpace(NumberVector data)
Project a data vector from data space to scaled space.
|
double[] |
FullProjection.projectDataToScaledSpace(NumberVector data)
Project a data vector from data space to scaled space.
|
double[] |
AbstractFullProjection.projectRelativeDataToRenderSpace(NumberVector data)
Project a relative data vector from data space to rendering space.
|
double[] |
FullProjection.projectRelativeDataToRenderSpace(NumberVector data)
Project a relative data vector from data space to rendering space.
|
double[] |
AbstractFullProjection.projectRelativeDataToScaledSpace(NumberVector data)
Project a relative data vector from data space to scaled space.
|
double[] |
FullProjection.projectRelativeDataToScaledSpace(NumberVector data)
Project a relative data vector from data space to scaled space.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramProjector<V extends NumberVector>
ScatterPlotProjector is responsible for producing a set of scatterplot
visualizations.
|
Modifier and Type | Method and Description |
---|---|
static org.w3c.dom.Element |
SVGHyperSphere.drawCross(SVGPlot svgp,
Projection2D proj,
NumberVector mid,
double radius)
Wireframe "cross" hypersphere
|
static org.w3c.dom.Element |
SVGHyperSphere.drawEuclidean(SVGPlot svgp,
Projection2D proj,
NumberVector mid,
double radius)
Wireframe "euclidean" hypersphere
|
static org.w3c.dom.Element |
SVGHyperCube.drawFilled(SVGPlot svgp,
java.lang.String cls,
Projection2D proj,
NumberVector min,
NumberVector max)
Filled hypercube.
|
static org.w3c.dom.Element |
SVGHyperCube.drawFrame(SVGPlot svgp,
Projection2D proj,
NumberVector min,
NumberVector max)
Wireframe hypercube.
|
static org.w3c.dom.Element |
SVGHyperSphere.drawLp(SVGPlot svgp,
Projection2D proj,
NumberVector mid,
double radius,
double p)
Wireframe "Lp" hypersphere
|
static org.w3c.dom.Element |
SVGHyperSphere.drawManhattan(SVGPlot svgp,
Projection2D proj,
NumberVector mid,
double radius)
Wireframe "manhattan" hypersphere
|
private static java.util.ArrayList<double[]> |
SVGHyperCube.getVisibleEdges(Projection2D proj,
NumberVector s_min,
NumberVector s_max)
Get the visible (non-0) edges of a hypercube
|
Modifier and Type | Class and Description |
---|---|
class |
ColoredHistogramVisualizer.Instance<NV extends NumberVector>
Instance
|
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends NumberVector> |
AbstractScatterplotVisualization.rel
The representation we visualize
|
protected ReferencePointsResult<? extends NumberVector> |
ReferencePointsVisualization.Instance.result
Serves reference points.
|
Modifier and Type | Field and Description |
---|---|
private AbstractMaterializeKNNPreprocessor<? extends NumberVector> |
DistanceFunctionVisualization.Instance.result
The selection result we work on
|
Modifier and Type | Method and Description |
---|---|
static org.w3c.dom.Element |
DistanceFunctionVisualization.drawCosine(SVGPlot svgp,
Projection2D proj,
NumberVector mid,
double angle)
Visualizes Cosine and ArcCosine distance functions
|
Modifier and Type | Class and Description |
---|---|
class |
SameSizeKMeansAlgorithm<V extends NumberVector>
K-means variation that produces equally sized clusters.
|
static class |
SameSizeKMeansAlgorithm.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super NumberVector> |
TutorialDistanceFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super NumberVector> |
MultiLPNorm.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
TutorialDistanceFunction.distance(NumberVector o1,
NumberVector o2) |
double |
MultiLPNorm.distance(NumberVector o1,
NumberVector o2) |
Copyright © 2019 ELKI Development Team. License information.