public static class DependencyDerivator.Parameterizer<V extends NumberVector> extends AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer<V>
Modifier and Type | Field and Description |
---|---|
static OptionID |
DEPENDENCY_DERIVATOR_RANDOM_SAMPLE_ID
Flag to use random sample (use knn query around centroid, if flag is not
set).
|
protected EigenPairFilter |
filter
Filter to select eigenvectors.
|
static OptionID |
OUTPUT_ACCURACY_ID
Parameter to specify the threshold for output accuracy fraction digits,
must be an integer equal to or greater than 0.
|
protected int |
outputAccuracy
Output accuracy.
|
protected PCARunner |
pca
Class to compute PCA with
|
protected boolean |
randomSample
Flag to enable random sampling
|
static OptionID |
SAMPLE_SIZE_ID
Optional parameter to specify the threshold for the size of the random
sample to use, must be an integer greater than 0.
|
protected int |
sampleSize
Sample size.
|
distanceFunction
Constructor and Description |
---|
Parameterizer() |
Modifier and Type | Method and Description |
---|---|
protected DependencyDerivator<V> |
makeInstance()
Make an instance after successful configuration.
|
protected void |
makeOptions(Parameterization config)
Add all options.
|
configure, make
public static final OptionID DEPENDENCY_DERIVATOR_RANDOM_SAMPLE_ID
public static final OptionID OUTPUT_ACCURACY_ID
public static final OptionID SAMPLE_SIZE_ID
Default value: the size of the complete dataset
protected int outputAccuracy
protected int sampleSize
protected boolean randomSample
protected PCARunner pca
protected EigenPairFilter filter
protected void makeOptions(Parameterization config)
AbstractParameterizer
makeOptions
in class AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer<V extends NumberVector>
config
- Parameterization to add options to.protected DependencyDerivator<V> makeInstance()
AbstractParameterizer
makeInstance
in class AbstractParameterizer
Copyright © 2019 ELKI Development Team. License information.