See: Description
| Class | Description |
|---|---|
| AbstractAggarwalYuOutlier<V extends NumberVector> |
Abstract base class for the sparse-grid-cell based outlier detection of
Aggarwal and Yu.
|
| AbstractAggarwalYuOutlier.Parameterizer |
Parameterization class.
|
| AggarwalYuEvolutionary<V extends NumberVector> |
Evolutionary variant (EAFOD) of the high-dimensional outlier detection
algorithm by Aggarwal and Yu.
|
| AggarwalYuEvolutionary.Individuum |
Individuum for the evolutionary search.
|
| AggarwalYuEvolutionary.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| AggarwalYuNaive<V extends NumberVector> |
BruteForce variant of the high-dimensional outlier detection algorithm by
Aggarwal and Yu.
|
| AggarwalYuNaive.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| OutRankS1 |
OutRank: ranking outliers in high dimensional data.
|
| OutRankS1.Parameterizer |
Parameterization class.
|
| OUTRES |
Adaptive outlierness for subspace outlier ranking (OUTRES).
|
| OUTRES.KernelDensityEstimator |
Kernel density estimation and utility class.
|
| OUTRES.Parameterizer |
Parameterization class.
|
| SOD<V extends NumberVector> |
Subspace Outlier Degree.
|
| SOD.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| SOD.SODModel |
SOD Model class
|
Methods that detect outliers in subspaces (projections) of the data set.
Copyright © 2019 ELKI Development Team. License information.