public class WithinClusterMeanDistanceQualityMeasure extends java.lang.Object implements KMeansQualityMeasure<NumberVector>
The average of all average pairwise distances in a cluster.
| Constructor and Description |
|---|
WithinClusterMeanDistanceQualityMeasure() |
| Modifier and Type | Method and Description |
|---|---|
boolean |
isBetter(double currentCost,
double bestCost)
Compare two scores.
|
<V extends NumberVector> |
quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
public WithinClusterMeanDistanceQualityMeasure()
public <V extends NumberVector> double quality(Clustering<? extends MeanModel> clustering, NumberVectorDistanceFunction<? super V> distanceFunction, Relation<V> relation)
KMeansQualityMeasurequality in interface KMeansQualityMeasure<NumberVector>V - Actual vector type (could be a subtype of O!)clustering - Clustering to analyzedistanceFunction - Distance function to use (usually Euclidean or
squared Euclidean!)relation - Relation for accessing objectspublic boolean isBetter(double currentCost,
double bestCost)
KMeansQualityMeasureisBetter in interface KMeansQualityMeasure<NumberVector>currentCost - New (candiate) cost/scorebestCost - Existing best cost/score (may be NaN)true when the new score is better, or the old score is
NaN.Copyright © 2019 ELKI Development Team. License information.