V
- the type of NumberVector handled by this Algorithm.@Title(value="FastDOC: Density-based Optimal projective Clustering") @Reference(authors="C. M. Procopiuc, M. Jones, P. K. Agarwal, T. M. Murali", title="A Monte Carlo algorithm for fast projective clustering", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD \'02)", url="https://doi.org/10.1145/564691.564739", bibkey="DBLP:conf/sigmod/ProcopiucJAM02") public class FastDOC<V extends NumberVector> extends DOC<V>
Reference:
C. M. Procopiuc, M. Jones, P. K. Agarwal, T. M. Murali
A Monte Carlo algorithm for fast projective clustering
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '02).
Modifier and Type | Class and Description |
---|---|
static class |
FastDOC.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private int |
d_zero
Holds the value of
FastDOC.Parameterizer.D_ZERO_ID . |
private static Logging |
LOG
The logger for this class.
|
alpha, beta, rnd, w
ALGORITHM_ID
Constructor and Description |
---|
FastDOC(double alpha,
double beta,
double w,
int d_zero,
RandomFactory random)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
protected Cluster<SubspaceModel> |
runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of FastDOC, finding a single cluster.
|
computeClusterQuality, dimensionIsRelevant, findNeighbors, getInputTypeRestriction, makeCluster, run
run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
private static final Logging LOG
private int d_zero
FastDOC.Parameterizer.D_ZERO_ID
.public FastDOC(double alpha, double beta, double w, int d_zero, RandomFactory random)
alpha
- α relative density threshold.beta
- β balancing parameter for size vs. dimensionality.w
- half width parameter.random
- Random factoryprotected Cluster<SubspaceModel> runDOC(Database database, Relation<V> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)
runDOC
in class DOC<V extends NumberVector>
database
- Database contextrelation
- used to get actual values for DBIDs.S
- The set of points we're working on.d
- Dimensionality of the data set we're currently working on.r
- Size of random samples.m
- Number of inner iterations (per seed point).n
- Number of outer iterations (seed points).minClusterSize
- Minimum size a cluster must have to be accepted.null
.protected Logging getLogger()
AbstractAlgorithm
getLogger
in class DOC<V extends NumberVector>
Copyright © 2019 ELKI Development Team. License information.