O
- Object type for KMedoids initialization@Priority(value=-100) @Reference(authors="H.-S. Park, C.-H. Jun", title="A simple and fast algorithm for K-medoids clustering", booktitle="Expert Systems with Applications 36(2)", url="https://doi.org/10.1016/j.eswa.2008.01.039", bibkey="DBLP:journals/eswa/ParkJ09") public class ParkInitialMeans<O> extends java.lang.Object implements KMeansInitialization, KMedoidsInitialization<O>
It is easy to imagine that this approach can become problematic, because it does not take the distances between medoids into account. In the worst case, it may choose k duplicates as initial centers, therefore we cannot recommend this strategy, but it is provided for completeness.
Reference:
H.-S. Park, C.-H. Jun
A simple and fast algorithm for K-medoids clustering
Expert Systems with Applications 36(2)
Modifier and Type | Class and Description |
---|---|
static class |
ParkInitialMeans.Parameterizer<V>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private static Logging |
LOG
Class logger.
|
Constructor and Description |
---|
ParkInitialMeans()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means
|
DBIDs |
chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ)
Choose initial means
|
private static final Logging LOG
public double[][] chooseInitialMeans(Database database, Relation<? extends NumberVector> relation, int k, NumberVectorDistanceFunction<?> distanceFunction)
KMeansInitialization
chooseInitialMeans
in interface KMeansInitialization
database
- Database contextrelation
- Relationk
- Parameter kdistanceFunction
- Distance functionpublic DBIDs chooseInitialMedoids(int k, DBIDs ids, DistanceQuery<? super O> distQ)
KMedoidsInitialization
chooseInitialMedoids
in interface KMedoidsInitialization<O>
k
- Parameter kids
- Candidate IDs.distQ
- Distance functionCopyright © 2019 ELKI Development Team. License information.