V
- vector datatype@Title(value="Compare-Means") @Reference(authors="S. J. Phillips", title="Acceleration of k-means and related clustering algorithms", booktitle="Proc. 4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX 2002)", url="https://doi.org/10.1007/3-540-45643-0_13", bibkey="DBLP:conf/alenex/Phillips02") @Priority(value=199) public class KMeansCompare<V extends NumberVector> extends AbstractKMeans<V,KMeansModel>
Reference:
S. J. Phillips
Acceleration of k-means and related clustering algorithms
Proc. 4th Int. W. on Algorithm Engineering and Experiments (ALENEX 2002)
Modifier and Type | Class and Description |
---|---|
protected static class |
KMeansCompare.Instance
Inner instance, storing state for a single data set.
|
static class |
KMeansCompare.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private static Logging |
LOG
The logger for this class.
|
initializer, k, maxiter
distanceFunction
ALGORITHM_ID
INIT_ID, K_ID, MAXITER_ID, SEED_ID, VARSTAT_ID
DISTANCE_FUNCTION_ID
Constructor and Description |
---|
KMeansCompare(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization initializer)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
Clustering<KMeansModel> |
run(Database database,
Relation<V> relation)
Run the clustering algorithm.
|
getInputTypeRestriction, incrementalUpdateMean, initialMeans, means, minusEquals, nearestMeans, plusEquals, plusMinusEquals, setDistanceFunction, setInitializer, setK
getDistanceFunction
run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
getDistanceFunction
private static final Logging LOG
public KMeansCompare(NumberVectorDistanceFunction<? super V> distanceFunction, int k, int maxiter, KMeansInitialization initializer)
distanceFunction
- distance functionk
- k parametermaxiter
- Maxiter parameterinitializer
- Initialization methodpublic Clustering<KMeansModel> run(Database database, Relation<V> relation)
KMeans
database
- Database to run on.relation
- Relation to process.protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<KMeansModel>>
Copyright © 2019 ELKI Development Team. License information.