V
- the type of FeatureVector handled by this Algorithm@Title(value="EAFOD: the evolutionary outlier detection algorithm") @Description(value="Outlier detection for high dimensional data") @Reference(authors="C. C. Aggarwal, P. S. Yu", title="Outlier detection for high dimensional data", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2001)", url="https://doi.org/10.1145/375663.375668", bibkey="DBLP:conf/sigmod/AggarwalY01") @Alias(value="de.lmu.ifi.dbs.elki.algorithm.outlier.AggarwalYuEvolutionary") public class AggarwalYuEvolutionary<V extends NumberVector> extends AbstractAggarwalYuOutlier<V>
Reference:
Outlier detection for high dimensional data
C. C. Aggarwal, P. S. Yu
Proc. 2001 ACM SIGMOD international conference on Management of data
Modifier and Type | Class and Description |
---|---|
private class |
AggarwalYuEvolutionary.EvolutionarySearch
The inner class to handle the actual evolutionary computation.
|
private static class |
AggarwalYuEvolutionary.Individuum
Individuum for the evolutionary search.
|
static class |
AggarwalYuEvolutionary.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected static double |
CONVERGENCE
At which gene homogenity do we have convergence?
|
private static Logging |
LOG
The logger for this class.
|
private int |
m
Holds the value of
AggarwalYuEvolutionary.Parameterizer.M_ID . |
protected static int |
MAX_ITERATIONS
Maximum iteration count for evolutionary search.
|
private RandomFactory |
rnd
Random generator.
|
DONT_CARE, GENE_OFFSET, k, phi
ALGORITHM_ID
Constructor and Description |
---|
AggarwalYuEvolutionary(int k,
int phi,
int m,
RandomFactory rnd)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
OutlierResult |
run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database.
|
buildRanges, computeSubspace, computeSubspaceForGene, getInputTypeRestriction, sparsity
run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
private static final Logging LOG
protected static final int MAX_ITERATIONS
protected static final double CONVERGENCE
private int m
AggarwalYuEvolutionary.Parameterizer.M_ID
.private RandomFactory rnd
public AggarwalYuEvolutionary(int k, int phi, int m, RandomFactory rnd)
k
- Kphi
- Phim
- Mrnd
- Random generatorpublic OutlierResult run(Database database, Relation<V> relation)
database
- Databaserelation
- Relationprotected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<OutlierResult>
Copyright © 2019 ELKI Development Team. License information.