V
- vector datatype@Reference(authors="J. Newling", title="Fast k-means with accurate bounds", booktitle="Proc. 33nd Int. Conf. on Machine Learning, ICML 2016", url="http://jmlr.org/proceedings/papers/v48/newling16.html", bibkey="DBLP:conf/icml/NewlingF16") public class KMeansSimplifiedElkan<V extends NumberVector> extends AbstractKMeans<V,KMeansModel>
Compared to KMeansElkan
, this uses less pruning, but also does not
need to maintain a matrix of pairwise centroid separation.
Reference:
J. Newling
Fast k-means with accurate bounds
Proc. 33nd Int. Conf. on Machine Learning, ICML 2016
Modifier and Type | Class and Description |
---|---|
protected static class |
KMeansSimplifiedElkan.Instance
Inner instance, storing state for a single data set.
|
static class |
KMeansSimplifiedElkan.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private static Logging |
LOG
The logger for this class.
|
protected boolean |
varstat
Flag whether to compute the final variance statistic.
|
initializer, k, maxiter
distanceFunction
ALGORITHM_ID
INIT_ID, K_ID, MAXITER_ID, SEED_ID, VARSTAT_ID
DISTANCE_FUNCTION_ID
Constructor and Description |
---|
KMeansSimplifiedElkan(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization initializer,
boolean varstat)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
Clustering<KMeansModel> |
run(Database database,
Relation<V> relation)
Run the clustering algorithm.
|
getInputTypeRestriction, incrementalUpdateMean, initialMeans, means, minusEquals, nearestMeans, plusEquals, plusMinusEquals, setDistanceFunction, setInitializer, setK
getDistanceFunction
run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
getDistanceFunction
private static final Logging LOG
protected boolean varstat
public KMeansSimplifiedElkan(NumberVectorDistanceFunction<? super V> distanceFunction, int k, int maxiter, KMeansInitialization initializer, boolean varstat)
distanceFunction
- distance functionk
- k parametermaxiter
- Maxiter parameterinitializer
- Initialization methodvarstat
- Compute the variance statisticpublic Clustering<KMeansModel> run(Database database, Relation<V> relation)
KMeans
database
- Database to run on.relation
- Relation to process.protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<KMeansModel>>
Copyright © 2019 ELKI Development Team. License information.