public class WithinClusterVarianceQualityMeasure extends AbstractKMeansQualityMeasure<NumberVector>
Constructor and Description |
---|
WithinClusterVarianceQualityMeasure() |
Modifier and Type | Method and Description |
---|---|
boolean |
isBetter(double currentCost,
double bestCost)
Compare two scores.
|
<V extends NumberVector> |
quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
logLikelihood, numberOfFreeParameters, numPoints, varianceOfCluster
public <V extends NumberVector> double quality(Clustering<? extends MeanModel> clustering, NumberVectorDistanceFunction<? super V> distanceFunction, Relation<V> relation)
KMeansQualityMeasure
V
- Actual vector type (could be a subtype of O!)clustering
- Clustering to analyzedistanceFunction
- Distance function to use (usually Euclidean or
squared Euclidean!)relation
- Relation for accessing objectspublic boolean isBetter(double currentCost, double bestCost)
KMeansQualityMeasure
currentCost
- New (candiate) cost/scorebestCost
- Existing best cost/score (may be NaN
)true
when the new score is better, or the old score is
NaN
.Copyright © 2019 ELKI Development Team. License information.