See: Description
Interface | Description |
---|---|
KMeansInitialization |
Interface for initializing K-Means
|
KMedoidsInitialization<V> |
Interface for initializing K-Medoids.
|
Class | Description |
---|---|
AbstractKMeansInitialization |
Abstract base class for common k-means initializations.
|
AbstractKMeansInitialization.Parameterizer |
Parameterization class.
|
FarthestPointsInitialMeans<O> |
K-Means initialization by repeatedly choosing the farthest point (by the
minimum distance to earlier points).
|
FarthestPointsInitialMeans.Parameterizer<O> |
Parameterization class.
|
FarthestSumPointsInitialMeans<O> |
K-Means initialization by repeatedly choosing the farthest point (by the
sum of distances to previous objects).
|
FarthestSumPointsInitialMeans.Parameterizer<V> |
Parameterization class.
|
FirstKInitialMeans<O> |
Initialize K-means by using the first k objects as initial means.
|
FirstKInitialMeans.Parameterizer<V extends NumberVector> |
Parameterization class.
|
KMeansPlusPlusInitialMeans<O> |
K-Means++ initialization for k-means.
|
KMeansPlusPlusInitialMeans.Parameterizer<V> |
Parameterization class.
|
LABInitialMeans<O> |
Linear approximative BUILD (LAB) initialization for FastPAM (and k-means).
|
LABInitialMeans.Parameterizer<V> |
Parameterization class.
|
OstrovskyInitialMeans<O> |
Ostrovsky initial means, a variant of k-means++ that is expected to give
slightly better results on average, but only works for k-means and not for,
e.g., PAM (k-medoids).
|
OstrovskyInitialMeans.Parameterizer<V> |
Parameterization class.
|
PAMInitialMeans<O> |
PAM initialization for k-means (and of course, for PAM).
|
PAMInitialMeans.Parameterizer<V> |
Parameterization class.
|
ParkInitialMeans<O> |
Initialization method proposed by Park and Jun.
|
ParkInitialMeans.Parameterizer<V> |
Parameterization class.
|
PredefinedInitialMeans |
Run k-means with prespecified initial means.
|
PredefinedInitialMeans.Parameterizer |
Parameterization class.
|
RandomlyChosenInitialMeans<O> |
Initialize K-means by randomly choosing k existing elements as initial
cluster centers.
|
RandomlyChosenInitialMeans.Parameterizer<V> |
Parameterization class.
|
RandomNormalGeneratedInitialMeans |
Initialize k-means by generating random vectors (normal distributed
with \(N(\mu,\sigma)\) in each dimension).
|
RandomNormalGeneratedInitialMeans.Parameterizer |
Parameterization class.
|
RandomUniformGeneratedInitialMeans |
Initialize k-means by generating random vectors (uniform, within the value
range of the data set).
|
RandomUniformGeneratedInitialMeans.Parameterizer |
Parameterization class.
|
SampleKMeansInitialization<V extends NumberVector> |
Initialize k-means by running k-means on a sample of the data set only.
|
SampleKMeansInitialization.Parameterizer<V extends NumberVector> |
Parameterization class.
|
Copyright © 2019 ELKI Development Team. License information.