public class SphericalGaussianModel extends java.lang.Object implements EMClusterModel<EMModel>
| Modifier and Type | Field and Description |
|---|---|
(package private) double |
logNorm
Normalization factor.
|
(package private) double |
logNormDet
Normalization factor.
|
(package private) double[] |
mean
Mean vector.
|
(package private) double[] |
nmea
Temporary storage, to avoid reallocations.
|
(package private) double |
priorvar
Prior variance, for MAP estimation.
|
(package private) double |
variance
Variances.
|
(package private) double |
weight
Weight aggregation sum.
|
(package private) double |
wsum
Weight aggregation sum.
|
| Constructor and Description |
|---|
SphericalGaussianModel(double weight,
double[] mean)
Constructor.
|
SphericalGaussianModel(double weight,
double[] mean,
double var)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
beginEStep()
Begin the E step.
|
double |
estimateLogDensity(NumberVector vec)
Estimate the log likelihood of a vector.
|
EMModel |
finalizeCluster()
Finalize a cluster model.
|
void |
finalizeEStep(double weight,
double prior)
Finalize the E step.
|
double |
getWeight()
Get the cluster weight.
|
double |
mahalanobisDistance(double[] vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
mahalanobisDistance(NumberVector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
void |
setWeight(double weight)
Set the cluster weight.
|
void |
updateE(NumberVector vec,
double wei)
Process one data point in the E step
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitfinalizeFirstPassE, firstPassE, needsTwoPassdouble[] mean
double variance
double[] nmea
double logNorm
double logNormDet
double weight
double wsum
double priorvar
public SphericalGaussianModel(double weight,
double[] mean)
weight - Cluster weightmean - Initial meanpublic SphericalGaussianModel(double weight,
double[] mean,
double var)
weight - Cluster weightmean - Initial meanvar - Initial variancepublic void beginEStep()
EMClusterModelbeginEStep in interface EMClusterModel<EMModel>public void updateE(NumberVector vec, double wei)
EMClusterModelupdateE in interface EMClusterModel<EMModel>vec - Vector to processwei - Weight of point ("responsibility" of the cluster)public void finalizeEStep(double weight,
double prior)
EMClusterModelfinalizeEStep in interface EMClusterModel<EMModel>weight - weight of the clusterprior - MAP prior (0 for MLE)public double mahalanobisDistance(double[] vec)
vec - Vectorpublic double mahalanobisDistance(NumberVector vec)
vec - Vectorpublic double estimateLogDensity(NumberVector vec)
EMClusterModelestimateLogDensity in interface EMClusterModel<EMModel>vec - Vectorpublic double getWeight()
EMClusterModelgetWeight in interface EMClusterModel<EMModel>public void setWeight(double weight)
EMClusterModelsetWeight in interface EMClusterModel<EMModel>weight - Cluster weightpublic EMModel finalizeCluster()
EMClusterModelfinalizeCluster in interface EMClusterModel<EMModel>Copyright © 2019 ELKI Development Team. License information.