public class PredefinedInitialMeans extends AbstractKMeansInitialization
| Modifier and Type | Class and Description |
|---|---|
static class |
PredefinedInitialMeans.Parameterizer
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
(package private) double[][] |
initialMeans
Initial means to return.
|
rnd| Constructor and Description |
|---|
PredefinedInitialMeans(double[][] initialMeans)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
double[][] |
chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means
|
void |
setInitialClusters(java.util.List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means.
|
void |
setInitialMeans(double[][] initialMeans)
Set the initial means.
|
void |
setInitialMeans(java.util.List<double[]> initialMeans)
Set the initial means.
|
unboxVectorspublic PredefinedInitialMeans(double[][] initialMeans)
initialMeans - Initial meanspublic void setInitialMeans(java.util.List<double[]> initialMeans)
initialMeans - initial means.public void setInitialClusters(java.util.List<? extends Cluster<? extends MeanModel>> initialMeans)
initialMeans - initial means.public void setInitialMeans(double[][] initialMeans)
initialMeans - initial means.public double[][] chooseInitialMeans(Database database, Relation<? extends NumberVector> relation, int k, NumberVectorDistanceFunction<?> distanceFunction)
KMeansInitializationdatabase - Database contextrelation - Relationk - Parameter kdistanceFunction - Distance functionCopyright © 2019 ELKI Development Team. License information.