O
- Object type for KMedoids initialization@Reference(authors="L. Kaufman, P. J. Rousseeuw",title="Clustering by means of Medoids",booktitle="Statistical Data Analysis Based on the L1-Norm and Related Methods",bibkey="books/misc/KauRou87") @Reference(authors="L. Kaufman, P. J. Rousseeuw",title="Partitioning Around Medoids (Program PAM)",booktitle="Finding Groups in Data: An Introduction to Cluster Analysis",url="https://doi.org/10.1002/9780470316801.ch2",bibkey="doi:10.1002/9780470316801.ch2") @Alias(value="de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.PAMInitialMeans") public class PAMInitialMeans<O> extends java.lang.Object implements KMeansInitialization, KMedoidsInitialization<O>
Reference:
L. Kaufman, P. J. Rousseeuw
Clustering by means of Medoids
in: Statistical Data Analysis Based on the L1-Norm and Related Methods
Modifier and Type | Class and Description |
---|---|
static class |
PAMInitialMeans.Parameterizer<V>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private static Logging |
LOG
Class logger.
|
Constructor and Description |
---|
PAMInitialMeans()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
chooseInitialMeans(Database database,
Relation<? extends NumberVector> relation,
int k,
NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means
|
DBIDs |
chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ)
Choose initial means
|
private static final Logging LOG
public double[][] chooseInitialMeans(Database database, Relation<? extends NumberVector> relation, int k, NumberVectorDistanceFunction<?> distanceFunction)
KMeansInitialization
chooseInitialMeans
in interface KMeansInitialization
database
- Database contextrelation
- Relationk
- Parameter kdistanceFunction
- Distance functionpublic DBIDs chooseInitialMedoids(int k, DBIDs ids, DistanceQuery<? super O> distQ)
KMedoidsInitialization
chooseInitialMedoids
in interface KMedoidsInitialization<O>
k
- Parameter kids
- Candidate IDs.distQ
- Distance functionCopyright © 2019 ELKI Development Team. License information.