O
- Object typepublic class KMeansOutlierDetection<O extends NumberVector> extends AbstractAlgorithm<OutlierResult> implements OutlierAlgorithm
The scores are assigned by the objects distance to the nearest center.
We don't have a clear reference for this approach, but it seems to be a best practise in some areas to remove objects that have the largest distance from their center. If you need to cite this approach, please cite the ELKI version you used (use the ELKI publication list for citation information and BibTeX templates).
Modifier and Type | Class and Description |
---|---|
static class |
KMeansOutlierDetection.Parameterizer<O extends NumberVector>
Parameterizer.
|
Modifier and Type | Field and Description |
---|---|
(package private) KMeans<O,?> |
clusterer
Clustering algorithm to use
|
private static Logging |
LOG
Class logger.
|
ALGORITHM_ID
Constructor and Description |
---|
KMeansOutlierDetection(KMeans<O,?> clusterer)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
OutlierResult |
run(Database database,
Relation<O> relation)
Run the outlier detection algorithm.
|
run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
private static final Logging LOG
KMeans<O extends NumberVector,?> clusterer
public OutlierResult run(Database database, Relation<O> relation)
database
- Databaserelation
- Relationpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction
in interface Algorithm
getInputTypeRestriction
in class AbstractAlgorithm<OutlierResult>
protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<OutlierResult>
Copyright © 2019 ELKI Development Team. License information.