V - vector datatype@Title(value="k-Means (Lloyd/Forgy Algorithm)") @Reference(authors="S. Lloyd",title="Least squares quantization in PCM",booktitle="IEEE Transactions on Information Theory 28 (2): 129\u2013137.",url="https://doi.org/10.1109/TIT.1982.1056489",bibkey="DBLP:journals/tit/Lloyd82") @Reference(authors="E. W. Forgy",title="Cluster analysis of multivariate data: efficiency versus interpretability of classifications",booktitle="Biometrics 21(3)",bibkey="journals/biometrics/Forgy65") @Alias(value={"lloyd","forgy","de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans","de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeans"}) public class KMeansLloyd<V extends NumberVector> extends AbstractKMeans<V,KMeansModel>
Reference:
S. Lloyd
Least squares quantization in PCM
IEEE Transactions on Information Theory 28 (2)
previously published as Bell Telephone Laboratories Paper
E. W. Forgy
Cluster analysis of multivariate data: efficiency versus interpretability of
classifications
Abstract published in Biometrics 21(3)
| Modifier and Type | Class and Description |
|---|---|
protected static class |
KMeansLloyd.Instance
Inner instance, storing state for a single data set.
|
static class |
KMeansLloyd.Parameterizer<V extends NumberVector>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private static Logging |
LOG
The logger for this class.
|
initializer, k, maxiterdistanceFunctionALGORITHM_IDINIT_ID, K_ID, MAXITER_ID, SEED_ID, VARSTAT_IDDISTANCE_FUNCTION_ID| Constructor and Description |
|---|
KMeansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization initializer)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
Clustering<KMeansModel> |
run(Database database,
Relation<V> relation)
Run the clustering algorithm.
|
getInputTypeRestriction, incrementalUpdateMean, initialMeans, means, minusEquals, nearestMeans, plusEquals, plusMinusEquals, setDistanceFunction, setInitializer, setKgetDistanceFunctionrunclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrungetDistanceFunctionprivate static final Logging LOG
public KMeansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction, int k, int maxiter, KMeansInitialization initializer)
distanceFunction - distance functionk - k parametermaxiter - Maxiter parameterinitializer - Initialization methodpublic Clustering<KMeansModel> run(Database database, Relation<V> relation)
KMeansdatabase - Database to run on.relation - Relation to process.protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<KMeansModel>>Copyright © 2019 ELKI Development Team. License information.